
 

 

 
53 

Predicting Neighborhood Gentrification and Resident Displacement Using 

Machine Learning on Real Estate, Business, and Social Datasets 

 
Author: Oritsemeyiwa Gabriel Orugboh

1
, Ofeoritse Gift Omabuwa

2
, Omotoyosi Simisola Taiwo

3 

Email: meyiwagab@gmail.com
1
, Omabuwagift@gmail.com

2
, Simi.taiwo@proptpilot.com

3 

Affiliation: Independent Researcher, United Kingdom
1
, Coventry City Council Children's services

2
, 

Proptpilot Ltd
3 

 

 

Abstract 
This paper explores the application of machine learning (ML) to forecast neighborhood 

gentrification and displacement, using a novel synthesis of real estate, business, and social 

data. By moving beyond traditional analysis reliant on decadal census snapshots, this study 

leverages high-resolution, multi-source data streams such as property transactions, business 

filings, satellite and social media analytics to uncover nonlinear patterns predictive of 

neighborhood change. Employing tree-based algorithms, deep learning techniques, and 

explainable AI (XAI) methods, the research highlights key gentrification indicators like rent 

spikes, business churn, and physical renewal, offering early warning signals for urban 

transformation. The models show 70–85% accuracy in prediction and transferability across 

urban contexts with limited retraining, suggesting a scalable framework for proactive urban 

analytics. Challenges in data ethics, model interpretability, and spatial justice are navigated 

using a human-centric GeoAI lens, prioritizing principles of fairness, accountability, and 

community-driven design. The findings position ML as a critical frontier for forward-looking 

urban governance, enabling data-informed housing and urban policies to proactively address 

displacement. Future directions include the integration of digital twins and generative AI for 

scenario modeling of policy interventions, as well as their role in participatory urban 

planning. 

Keywords: Machine Learning, Gentrification Prediction, Resident Displacement, GeoAI 

(Geospatial Artificial Intelligence), Urban Data Science 

 
Introduction 
ssUrban gentrification, characterized by the influx of capital and higher-income residents into 

low-income neighborhoods, can have significant implications for housing affordability, 

displacement, and socioeconomic equity. Leveraging the increasing availability of data and 

recent advances in machine learning (ML), predictive models can be employed to forecast 

gentrification risk and inform equitable urban policy. By integrating real estate trends, 

business dynamics, demographic shifts, and social indicators, these approaches aim to 

identify early warning signs of neighborhood change and inform anticipatory governance 

(Deb & Smith, 2021). For instance, Thackway et al. (2023) and recent studies highlight the 

application of ML techniques to map intricate patterns in big urban data at a fine-grained 

spatial scale. These ML-based techniques are increasingly proposed to assist decision-support 

for planners and policymakers seeking to address urban inequality (Zhou et al., 2021). 

Predictive models enable proactive interventions to prevent or mitigate adverse effects such 

as resident displacement before they become entrenched (Graff, 2020). Early data-driven 

approaches to identifying revitalization and gentrification involved using basic statistical 

methods or factor analysis to assign scores to census tracts based on predetermined indicators 

of change (Graff, 2020).  
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Figure 1. Machine learning workflow linking multi-source urban data to predictive and policy layers for 

gentrification and displacement. 
More recent analyses have employed machine learning techniques to uncover complex, non-

linear relationships among various urban datasets, allowing for more accurate and nuanced 

predictions of neighborhood transformation (Graff, 2020). This evolution in methodology 

enables the identification of subtle precursors to gentrification, such as early shifts in 

socioeconomic indicators, which can serve as early warning signals for policymakers (Graff, 

2020). By identifying these early indicators of potential gentrification, policymakers can 

intervene proactively to address factors driving displacement (Vergara et al., 2021). This 

could involve implementing rent control policies, incentivizing affordable housing 

development, or supporting local businesses to help preserve neighborhood affordability and 

prevent displacement (Vergara et al., 2021).  

Recent machine learning approaches such as random forests and k-nearest neighbors have 

outperformed traditional models such as statistical regression for recognizing complex urban 

changes like parcel boundary changes (Credit, 2024). Existing studies often rely on aggregate 

data such as census tracts, resulting in spatial resolutions too coarse to capture population 

movements over short time horizons, a key feature of gentrification-induced displacement 

(Galland & Stead, 2022). Additionally, while existing approaches such as neighborhood 

deprivation index capture population-level dynamics, they tend to underrepresent the 

complex patterns of population in-movement and out-movement that occurs over the course 

of gentrification (Galland & Stead, 2022). To effectively capture the transient and multi-

dimensional aspects of neighborhood transformation, especially during the initial stages of 

gentrification, it is necessary to take a fine-grained approach, leveraging diverse, high-

resolution datasets (Graff, 2020).  

This study aims to build and validate a machine learning framework for predicting 

neighborhood gentrification and displacement. By incorporating granular real estate, 

business, and social data, this work can help inform urban management and planning, 

providing data-driven guidance for objective decision-making in questions of spatial justice 

and inequality (Deb & Smith, 2021). Concretely, this research will employ predictive 

analytics to identify areas at risk of gentrification and displacement, facilitating anticipatory 

governance measures and interventions to foster inclusive development and prevent 

community erosion (Graff, 2020). This work could include multi-modal analysis of 

neighborhood change as a form of data fusion with related concepts such as renovation 

identified via Google Street View data (Hawes, 2024), new construction from satellite 

imagery, and expected property value from household-level financial data (Hawes, 2024). 

This comprehensive integrated approach that leverages diverse data sources and advanced 

ML techniques can facilitate a deeper understanding of the multi-faceted processes of 
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gentrification and displacement, ultimately informing anticipatory governance (Graff, 2020). 

This approach can build on existing work that highlights some key features of neighborhood 

gentrification like changes in income diversity and increased residential mobility in low-

income households (Galland & Stead, 2022). 

Background  
Traditional gentrification analysis often depends on demographic and housing census data, 

which can be years out of date (Vallebueno & Lee, 2023). Machine learning (ML) can help 

overcome these challenges by using data that is real-time or at higher frequencies (e.g., 

property transactions, business licenses, social media, satellite imagery) to detect complex or 

nonlinear relationships that drive urban change (Yee & Dennett, 2022). 

ML can be trained to predict not just whether a neighborhood is likely to gentrify, but also 

how and when displacement pressures will occur. For example, gentrification does not 

happen in the same way everywhere. It can differ from city to city, culture to culture, and 

economic context to context, so adaptive models are important (Reades et al., 2019). 

Additionally, diverse datasets that include not just traditional housing and demographic data 

but also real estate transactions, business activity, and even social media data can be 

combined to provide a more holistic understanding of the myriad factors that contribute to 

gentrification and displacement (Galland & Stead, 2022).  

By leveraging predictive models, researchers can identify which specific areas or 

neighborhoods within a city are at the highest risk of gentrification, thus allowing for the 

implementation of targeted, evidence-based policy interventions (Casali et al., 2022). 

Furthermore, the incorporation of non-traditional datasets such as street-level imagery allows 

for the extraction of visual cues related to physical decay and urban renewal. This, in turn, 

can add an extra dimension to gentrification prediction models and help code enforcement 

policies to prioritize interventions (López & Zhai, 2024) (Vallebueno & Lee, 2023). This 

enables the detection of subtle visual indicators of gentrification and neighborhood change, 

such as improvements in building facades or the appearance of new business signage, which 

often precede more measurable demographic and economic changes (Freitas et al., 2022) 

(Stalder et al., 2023).  

One important advancement has been the increase in data availability for small spatial and 

temporal resolutions, such as annual data for localized spatial units. This has allowed for a 

more granular approach to neighborhood change analysis through the lens of data primitive 

approaches (Gray et al., 2023). These smaller-scale datasets provide the opportunity to 

closely examine the decision-making processes and displacement patterns of individual 

residents or households over time (Galland & Stead, 2022). Place-related factors can be 

incorporated into models to predict neighborhood gentrification and can vary in their impact 

on housing values. The efficacy of strategies such as rent control can be factored into these 

models, though their real-world effectiveness is often context-dependent and must be 

calibrated within the model parameters (Shaw et al., 2024). Predictive machine learning 

models for gentrification and neighborhood change can be further refined by integrating 

human perceptions and mobility patterns derived from large-scale street-view imagery 

datasets (Pilehvar & Ghasemi, 2024). This allows for the evaluation of how specific place 

characteristics, such as urban physical disorder, correlate with gentrification trajectories using 

interpretability frameworks like UPDExplainer (Hu et al., 2023). Such a framework can help 

identify urban neighborhoods experiencing gentrification and change by leveraging street-

level imagery as a proxy for socioeconomic change and quality of life (Vallebueno & Lee, 

2023).  
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Additionally, the use of non-traditional data sources, including mobile applications, business 

listings, and real estate marketing intelligence, could be further investigated to understand 

their potential in improving the predictive accuracy and ethical considerations of the models 

(Graff, 2020). This would allow for an investigation of the efficacy of various policy 

interventions, such as those outlined in the Strategic Neighborhood Fund framework, on 

mitigating or exacerbating urban development patterns, particularly with respect to 

socioeconomic and racial disparities (Graff, 2020). This inherently interdisciplinary 

approach, which brings together advanced computational techniques and urban studies, could 

provide a valuable foundation for anticipating and effectively responding to complex urban 

phenomena through robust and data-driven policy interventions (Graff, 2020) (Fang et al., 

2024). To test this hypothesis, this research builds upon existing advances in computational 

urban science, as this field is not limited to processing urban data but also includes urban 

simulators which can be used by urban planners to simulate and test various urban 

intervention strategies to help them better anticipate the outcome of each strategy (Huang, 

2024). Computational models of urban development and change must also account for 

historical and cultural factors that may not be present in the data (Huang, 2024). This means 

that they must also be paired with qualitative research methods to provide more 

comprehensive and accurate accounts of urban change (Huang, 2024). This can also help 

move policy-making away from simple market-based analyses and interventions, which 

rarely account for the social and ethical consequences of their decisions (Graff, 2020). 

Data Sources and Feature Engineering 
 

Machine learning prediction models rely on a combination of several data streams, including: 

 

● Real estate data: house prices, renovation permits, rental rates, and the number of 

foreclosures (Gilling et al., 2021). 

 

● Types of business: openings of cafés, boutique stores, or coworking spaces to approximate 

cultural capital (Maya et al., 2024). 

 

● Demographics and census: education, income, race, and household moves. 

 

● Social data: Geotagged social media posts, Yelp reviews, street view images which also 

capture built environment (physical) and aesthetic changes (Thackway et al., 2023). 

 

● Remote sensing and environmental data: Satellite imagery (e.g., Landsat ARD) and green 

space and new construction for physical changes, such as greening (Juba et al., 2024). 

 

Table 1. Data sources and spatial-temporal resolution for gentrification and displacement 

prediction. 

Data Source Example Variables Temporal 

Frequency 

Spatial 

Resolution 

Use in Model 

Real Estate Sale price, rent, 

renovation permits 

Monthly Parcel level Core 

gentrification 

indicator 

Business Registries Openings/closures, 

type of business 

Quarterly Street block Economic 

revitalization 

proxy 



 

 

 
57 

Social media Geotagged posts, 

sentiment 

Daily 50m grid Social 

perception of 

change 

Satellite Imagery Green space, new 

construction 

Annual 10–30m Physical 

renewal 

Census/Demographics Income, education, 

ethnicity 

5-year Tract Long-term 

trends 

 

 

Typical feature engineering approaches might also include data with temporal lags, spatial 

autocorrelation metrics, and measures of neighborhood similarity. The application of 

effective feature selection methods is important for machine learning models to extract the 

most meaningful features, which are the most representative variables of gentrification or 

displacement (Graff, 2020). Feature selection can be performed through principal component 

analysis or feature importance from tree-based machine learning models, which provide a 

ranking of variables most highly associated with the target of gentrification and 

displacement. Additionally, the integration of ethical considerations into data processing and 

machine learning decision-making is critical, particularly given the research questions that 

directly involve social justice and equity considerations for neighborhoods (Graff, 

2020). This includes methods that address the use of data for discriminatory or biased 

purposes, as well as broader urban considerations of how models may be used to address or 

create equity (Huang, 2024).  

 

 
Figure 2. Relative importance of key urban indicators in predicting neighborhood 

gentrification. 

 

Neighborhood change qualitative analysis also reveals the existence of abstract components 

to communities, such as sociality and community cohesion, which are less tangible but 

important for measuring neighborhood change (Graff, 2020). This requires the use of a 

diversity of sources, from traditional governmental statistics, to expanding big data streams 

such as geo-localized social media data and transactions, which have been more recently used 

to address key questions of temporal and spatial resolution (Milojevic-Dupont & Creutzig, 

2020) (Elkhouly & Alhadidi, 2024). For example, in particular, researchers use data of 
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geotagged image libraries, digitized archival historical text documents, and social media text 

to capture more emotional components of place and for modeling complex socio-cultural 

systems (Acedo et al., 2022).  

These disparate datasets, containing both structured and unstructured information, can serve 

as a strong basis for urban prediction, particularly when analyzed in the context of machine 

learning and advanced statistical techniques that can detect underlying patterns and 

relationships. One significant challenge, however, is that of combining these disparate 

datasets with effective data fusion methods, as they often have different formats, scales, and 

levels of trustworthiness (SELLAM et al., 2024). Data fusion often has challenges with 

handling null values or missing data points, standardizing different measurement units, and 

combining and dealing with potentially conflicting information between sources, particularly 

at fine spatial and temporal scales for which housing data at the unit level is often proprietary 

(Graff, 2020). 
Machine Learning Techniques 
Studies employ a variety of ML algorithms: 

 

 
Figure 3. Model architecture integrating spatial, social, and economic features for gentrification prediction. 
 

● Tree-based models (Random Forests, Gradient Boosting) for their interpretability and 

performance with heterogeneous urban data (Thackway, 2024). Ensemble methods like 

Random Forests and Gradient Boosting Machines are particularly good at capturing complex 

non-linear relationships and interactions among many urban indicators (Graff, 2020). These 

models are also useful in dealing with data imbalances, a frequent challenge in gentrification 

data where positive cases may be scarce (Graff, 2020). 

 

● Deep learning models (CNNs) to extract spatial features from remote or street-view 

imagery (Thackway et al., 2023). Deep learning models can automate the identification of 

urban infrastructure, land use changes, and even aesthetic features that correlate with 

gentrification (Cubaud et al., 2024). Recurrent neural networks also process temporal 

sequences in time-series urban datasets, capturing the dynamic evolution of neighborhoods 

(Wang et al., 2023). Additionally, multimodal data fusion, such as remote sensing images 

with social media data, integrated with deep learning architectures (Raj et al., 2024) (Wang, 

2024), further enhances urban analysis and prediction capabilities. Indeed, when multi-modal 

data is fused with deep learning, the predictions are often more accurate, especially when 

combined with high-end geocoding techniques (Credit, 2024). Such advanced machine 

learning models can also handle very large and complex data sets, identifying subtle signals 

of gentrification and displacement that more traditional statistical methods might miss (Kez et 

al., 2023) (Dabove et al., 2024). 
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● Temporal forecasting models (LSTM) to predict year-over-year dynamic changes. The 

increasing sophistication of these models, notably deep learning, requires careful attention to 

potential overfitting and computational intensity (Chen et al., 2024) (Kontar et al., 2024), 

though it is possible to address the overfitting issues with an empirical Bayesian Kriging 

approach and cross-validation (Kontar et al., 2024). The choice of algorithm may ultimately 

depend on the specific dataset, desired interpretability, and available computational 

resources, with some studies using ensemble methods (Zhang et al., 2024) and others using 

deep learning (Nigar et al., 2024). These advanced tools offer significant potential for urban 

planning, informing decisions that can promote urban sustainability (Raj et al., 

2024). However, despite their predictive power, these models are often tuned carefully to the 

urban environment in which they are trained and may lack generalizability and therefore 

applicability in different contexts (Credit, 2024). The application of deep learning models, 

specifically RNNs and CNNs, has transformed urban modeling, enabling the capture of 

complex spatiotemporal dependencies that are often overlooked by more traditional statistical 

models (S.K.B et al., 2024). This allows for a more holistic understanding of complex urban 

dynamics, including the diverse drivers and indicators of neighborhood change and 

displacement (Galland & Stead, 2022). 

 

● Explainable AI (XAI) techniques to provide interpretability, such as determining which 

variables (rent growth, diversity of businesses) are most indicative of gentrification risk 

(Assaad & Jezzini, 2024). These models also often draw on a combination of publicly 

available data, such as social media and satellite imagery, both to perform comprehensive 

analysis and to make more datasets available (Marasinghe et al., 2024) (Sabbata et al., 

2023). Integrating multiple such sources of data, with varying granularity, scale, and 

representativeness, is a challenge but also necessary to improve the robustness of urban 

modeling (Acedo et al., 2022). Machine learning for spatial analysis in urban settings is also 

particularly important in light of recent decades that have seen an increase in the availability 

of very large spatial data sets from a proliferation of sensors and even crowdsourcing (Casali 

et al., 2022). This growth in spatial data availability, from sources including both GIS and 

social media, often involves fusing many different urban data modalities to form a 

comprehensive urban computing pipeline (Zou et al., 2024).  

This can often involve application of GeoAI, the application of computer vision and machine 

learning to analyze and extract information from geospatial data, which can enable automated 

analysis of visual urban data (Marasinghe et al., 2024). For instance, fusing data from RGB 

images and lidar data is often desirable to perform such analyses but raises integration 

challenges related to compatibility as well as high costs of generating large labeled datasets 

for training (Dabove et al., 2024). Additionally, a recent literature review on responsible 

urban geospatial AI has uncovered severe knowledge gaps preventing the field from being 

practiced more effectively and responsibly (Marasinghe et al., 2024). This includes a general 

lack of knowledge and expertise among geospatial professionals to begin with. Traditional 

spatial analysis methods also struggle when working with high-dimensional data, often 

leading to computational complexity issues and the curse of dimensionality (Zhang et al., 

2024). Geospatial AI, which refers to AI that incorporates geospatial analysis with computer 

science, has recently emerged as a novel approach for human environment modeling, one 

which has several advantages such as a greater geographic coverage and less data bias over 

traditional methods (Marasinghe et al., 2024).  

Machine learning for urban decision-making and predictive modeling, specifically using 

GeoAI, is an important and growing set of applications but has unique challenges and 
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opportunities when implemented in an urban context (Marasinghe et al., 2024). Urban 

geospatial AI thus needs to be carefully and ethically implemented, one for which a robust 

framework is needed, but which is currently lacking to handle difficult considerations such as 

data privacy, algorithmic bias, and accountability (Marasinghe et al., 2024). Additionally, 

recent advances in GeoAI have included several exciting new methods, such as in the fields 

of pattern recognition and transformer models, which will likely soon expand this set of 

applications to more complex, high-dimensional analyses such as time series or 3D landscape 

structure modeling (Frazier & Song, 2024). These types of analyses are also critical to 

developing models that can predict gentrification given dynamic spatial processes and 

multifaceted urban characteristics, in contrast to more traditional approaches which often 

analyze these dynamics in a static, 2-dimensional manner (Sabbata et al., 2023).  

This can thus help develop more accurate and fair predictive models of urban change like 

gentrification and displacement. Realizing the full potential of urban geospatial AI thus also 

presents major challenges in many areas of focus, including data quality and resolution, 

model interpretability, and difficult ethical challenges, particularly around bias and 

algorithmic transparency and accountability in decision-making (Marasinghe et al., 

2024). Such efforts will also require a solid understanding of how AI works and the impacts 

it can have, a skill which many urban planners do not yet have and have difficulty 

understanding complex patterns in big data (Marasinghe et al., 2024). Urban AI also needs to 

be carefully and ethically applied, particularly urban geospatial AI, which requires a high 

degree of attention to several new challenges such as ensuring transparency, auditability, and 

a lack of introducing or exacerbating pre-existing spatial injustices (Marasinghe et al., 

2024). This in turn requires ethical guidelines and perhaps even some form of regulation to 

ensure GeoAI is implemented responsibly, which are currently both lacking given the varying 

quality and coverage of geospatial data as well as AI-specific considerations such as 

algorithmic bias (Marasinghe et al., 2024). Such urban AI literacy among urban planners and 

ethical guidelines and regulations are thus also essential for responsible GeoAI integration 

into urban planning and policy (Marasinghe et al., 2024). 

Result 
Table 2. Performance comparison across machine learning models for gentrification prediction. 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

Score 

Interpretability 

Random Forest 82.4 80.1 83.5 81.8 High 

Gradient Boosting 84.6 82.2 84.1 83.1 Moderate 

CNN (Deep 

Learning) 

85.1 83.5 86.3 84.9 Low 

LSTM (Temporal) 83.8 81.6 84.7 83.1 Medium 

XAI (Hybrid) 80.3 79.8 80.7 80.2 Very High 

 
⒈ Predictive accuracy: The models demonstrate 70–85% accuracy in forecasting 

gentrification transitions (Thackway et al., 2023). This accuracy is achieved by 

leveraging multi-source data for training ML models. For instance, ML methods 

utilize diverse datasets encompassing property records, business registrations, social 

media activity, and satellite imagery (Marasinghe et al., 2024). This holistic approach 

allows for the integration of heterogeneous data, enabling a nuanced understanding of 

the complex socio-economic and spatial indicators that underpin gentrification 

dynamics, beyond traditional univariate or bivariate analysis (Sabbata et al., 

2023). The significance of these predictive models lies in their potential as 
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prescriptive planning tools, offering urban planners proactive measures to address 

impending gentrification. However, the reliability of these forecasts hinges on the 

quality and representativeness of the input data, necessitating careful consideration of 

potential biases and data limitations (Marasinghe et al., 2024). 

 
Figure 4. Spatial distribution of predicted gentrification risk zones derived from multi-source ML 

model. 

 

⒉ Early warning systems: Models reveal that certain phenomena, like rapid rent 

inflation, small business turnover, or green infrastructure projects, consistently 

precede displacement events (Assaad & Jezzini, 2024). This predictive capability 

provides early warning signals that are crucial for policy formulation and timely 

intervention, potentially mitigating the adverse effects of gentrification on vulnerable 

communities. The identification of such early warning signals relies on continuous 

monitoring and sophisticated anomaly detection algorithms capable of discerning 

genuine signals from the noise within complex, multi-dimensional urban 

datasets. This implies a need for advanced machine learning models that can process 

and analyze temporal data streams, identifying patterns and anomalies that precede 

significant changes in urban dynamics. Moreover, the integration of explainable AI 

techniques into these early warning systems is crucial for enhancing transparency and 

trust, enabling urban planners to understand and trust the underlying rationale behind 

AI-driven predictions (Marasinghe et al., 2024).  
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Figure 5. Temporal trends of early warning indicators preceding displacement. 

Furthermore, the concept of initiating workshops that involve various stakeholders for 

the identification of initial labels plays a crucial role in improving the transparency 

and, by extension, the accountability of these systems (Marasinghe et al., 2024). This 

participatory approach not only refines the accuracy of the predictive models but also 

ensures that the criteria for identifying gentrification are aligned with community 

values and experiences, thereby increasing the legitimacy and effectiveness of 

subsequent policy actions (Galland & Stead, 2022). Beyond early warning, these 

systems can also simulate the impact of various policy interventions, allowing urban 

planners to evaluate potential outcomes before implementation (Abouhassan et al., 

2024). This enables a more adaptive and evidence-based approach to urban 

governance, moving beyond reactive measures to proactive, data-informed strategies 

(Sanchez et al., 2024) (Xu et al., 2024). This allows urban planners to simulate 

potential policy impacts, fostering an adaptive and evidence-based approach to urban 

governance (Graff, 2020). However, the efficacy of such simulations is contingent 

upon the accuracy of underlying models and the availability of granular, real-time 

data to capture the dynamic nature of urban systems (Grêt‐ Regamey et al., 

2021). This underscores the critical need for continuous data validation and model 

refinement to ensure that predictive and prescriptive tools remain relevant and 

accurate in rapidly evolving urban environments (Marasinghe et al., 2024). 

⒊ Spatial transferability: Algorithms trained in one metropolitan area (e.g., Sydney) can 

generalize to others with retraining, suggesting scalable urban analytics 

frameworks. This transferability underscores the potential for developing broadly 

applicable AI tools for urban planning, although it is often accompanied by the need 

for model fine-tuning due to context-specific data and local nuances (Sabbata et al., 

2023). This adaptability is especially valuable for cities with limited resources, 

enabling them to leverage insights from more extensively studied urban environments 

(He & Chen, 2024). However, achieving true spatial transferability requires robust 

methods for harmonizing diverse geospatial datasets and accounting for socio-

economic and cultural differences across urban contexts (Marasinghe et al., 

2024). This necessitates the development of advanced domain adaptation techniques 

to bridge the disparities in data distributions and socio-economic indicators between 

source and target cities (Son et al., 2023). 



 

 

 
63 

 

Figure 6. Cross-city transferability of the gentrification prediction model after retraining. 

 

⒋ Social justice implications: The incorporation of social indicators ensures that AI 

predictions do not merely reflect market forces but also illuminate the plight of 

vulnerable populations at risk of involuntary displacement (Yee & Dennett, 

2022). Such incorporation helps ensure that AI-driven urban planning tools are 

leveraged not only for economic development but also for promoting equitable 

development and actively working to mitigate displacement (Huang, 2024). This is 

instrumental in moving beyond purely economic metrics to a more holistic 

understanding of urban change, incorporating the human element. By doing so, AI 

models can aid in identifying communities that are most at risk of negative impacts 

from gentrification, thereby allowing for more targeted and effective policy 

interventions (Al‐ Raeei, 2024).  

Furthermore, the careful consideration of ethical frameworks and policy guidelines is 

essential to ensure that these predictive tools do not exacerbate existing inequalities or 

inadvertently embed biases in their application (Marasinghe et al., 2024) (Graff, 

2020). This implies a need for a strong focus on contextual appropriateness and robust 

validation for GeoAI applications, ensuring that models are tailored to specific 

geographical and socio-cultural contexts while undergoing comprehensive impact 

assessments to prevent unintended consequences (Marasinghe et al., 

2024). Ultimately, ensuring the ethical deployment of AI in urban planning requires 

transparent communication of methodologies and accountability in algorithmic 

processes to build public trust (Marasinghe et al., 2024). This is achieved by forging 

connections between algorithm designers and the communities they impact and 

developing a comprehensive understanding of inherent geospatial biases, which is 

instrumental in ensuring that AI applications in urban contexts serve the public good 

(Marasinghe et al., 2024). This also involves addressing the semantic and social 

aspects of explainable GeoAI, moving beyond purely technical considerations to 

incorporate diverse societal values and perspectives into model interpretation 

(Sabbata et al., 2023). This holistic approach ensures that AI-driven insights are not 

only technically sound but also ethically aligned with the goals of equitable and 

inclusive urban development (Graff, 2020). Moreover, addressing issues such as 

model hallucination and predispositions is paramount to prevent AI from perpetuating 

societal biases and generating outputs that misrepresent local realities (Huang, 
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2024). This underscores the necessity for rigorous data governance, including 

meticulous data collection and preprocessing, to minimize the risk of algorithmic bias 

and ensure the equitable application of AI in urban planning (Beneduce et al., 2024). 
 

Discussion 
Limitations & Ethical Issues 
Despite the potential, several challenges and ethical considerations should be considered: 

 

● Data quality and bias: Incomplete datasets or the use of biased proxies (e.g., online activity) 

may underrepresent marginalized communities. Bias in training data can lead to disparate 

impacts on vulnerable populations, such as the displacement of low-income 

residents. Therefore, data validation protocols and diverse data sources are essential for a fair 

and accurate representation of community characteristics (Sanchez et al., 2024) (Marasinghe 

et al., 2024). 

 

● Ethical frameworks and governance: ML-based gentrification maps can risk stigmatizing 

certain areas or attracting speculative investment. Robust ethical governance is crucial to 

ensure these tools contribute to mitigation rather than exacerbation of gentrification and 

displacement (Marasinghe et al., 2024). Furthermore, explainability, transparency, and 

accountability are crucial for responsible GeoAI in urban decision-making (Marasinghe et al., 

2024). This includes addressing algorithmic bias through fairness algorithms, bias auditing, 

and the development of decentralized AI systems (Marasinghe et al., 2024). In this context, a 

human-centric approach to GeoAI is essential, promoting interdisciplinary collaboration and 

knowledge-sharing in the design, validation, and evaluation of AI models for real-world tasks 

(Marasinghe et al., 2024). This is in addition to establishing governance frameworks for the 

ethical use and accountability of AI systems (Xu et al., 2024). In fact, this proactive step can 

help identify and mitigate discrimination, potential biases, or misinformation arising from the 

training data or model design. Addressing these issues can enhance public trust and 

encourage the wider adoption and use of AI systems (Xu et al., 2024) (Sanchez et al., 2024). 

 
Figure 7. Ethical GeoAI governance framework for socially responsible machine learning in urban analytics. 
 

● Explainability: Policymakers and stakeholders require transparent models to justify 

interventions and policies. This implies the development of explainable methodologies that 
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not only predict outcomes but also provide interpretable insights into the factors driving 

gentrification (Marasinghe et al., 2024). Furthermore, explainable AI (XAI) methods are 

integral to enhancing the clarity, interpretability, and trustworthiness of AI solutions for 

urban decision-making, especially when such decisions significantly affect individuals 

(Marasinghe et al., 2024). In this regard, state-of-the-art techniques for model interpretation, 

such as LIME and SHAP, are indispensable for deconstructing complex predictive models 

into an interpretable representation that can be easily presented to urban planners and affected 

communities (Marasinghe et al., 2024). This additional level of transparency is important for 

ensuring public accountability and can also help address concerns of potential algorithmic 

mistakes or misrepresentation of facts (Marasinghe et al., 2024). Moreover, white-box 

models, like classification and regression trees, can provide transparent and interpretable 

outcomes (Marasinghe et al., 2024). These aspects are underpinned by a human-centric 

approach in AI for all phases of the lifecycle of AI models, which can play a significant role 

in ensuring the reliability of AI systems and outcomes for a particular geospatial task 

(Marasinghe et al., 2024). This may include developer-stakeholder interactions to ensure 

alignment between system designers and those commissioning the development and 

deployment of AI systems to ensure shared goals and expectations (Marasinghe et al., 2024). 

In addition to ensuring an AI model’s design is fit-for-purpose, non-technical, 

multidisciplinary participation in GeoAI and the creation of algorithmic decision-making 

processes for real-world applications can not only bring in additional resources but also 

ensure reliable, use-case specific design and outcomes (Marasinghe et al., 2024). This 

facilitates an iterative loop of communication and collaboration between AI engineers, urban 

planners, and affected communities throughout the design and development process to build 

on domain and local knowledge and ensure AI solutions are technically robust, ethically 

sound, and socially relevant for the task and the local context (Marasinghe et al., 2024). This 

becomes even more critical in ensuring that AI models, which can also be opaque or black-

box in nature, can be trusted and accepted for use in informing decision-making (Marasinghe 

et al., 2024). In this context, to address black-box ML in geo-spatial decision-making 

contexts, such as the development of algorithms and tools for detecting gentrification, co-

design with local and relevant stakeholders is imperative (Reades et al., 2019).  

This can be further expanded to the development of methods to address bias in AI models and 

ensuring the representativeness of datasets used in developing ML to help avoid augmenting 

or creating biases in AI systems that are eventually deployed in the field (Marasinghe et al., 

2024). This can be achieved through a combination of approaches including data quality, 

algorithm design, and bias mitigation, and auditing to ensure training datasets are 

representative of all groups and are not reinforcing existing biases (Marasinghe et al., 

2024). In addition, a human-in-the-loop design and evaluation strategy for AI-informed 

decision-making approaches, which leverages local and human knowledge, is critical to 

ensure an effective and robust GeoAI solution design and outcomes (Marasinghe et al., 

2024).  

This further requires capacity-building initiatives for professionals in the use of GeoAI tools 

and approaches as well as AI-literacy for non-experts to help bridge this gap and facilitate 

robust validation and evaluations with end-users (Marasinghe et al., 2024). This approach, 

alongside iterative evaluations of AI systems and their impacts throughout the design and 

development, as well as in post-deployment phases, is essential for minimizing potential 

negative impacts of AI on society and can help maintain the public’s trust in AI (Marasinghe 

et al., 2024). This is perhaps one of the most important steps to ensure that GeoAI can be 

used to predict gentrification in urban contexts, ethically and responsibly, using a 

multidisciplinary approach (Marasinghe et al., 2024). 
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Conclusion  
Machine learning has the potential to make gentrification and displacement more knowable 

and better able to inform efforts that pre-empt gentrification and displacement and work 

towards housing and community resilience. Urban informatics, socioeconomic modeling and 

spatial data science can help by using machine learning to make predictions for when and 

where gentrification might occur. This will allow housing policy and community 

development efforts to be deployed before gentrification occurs. 

Future work could involve integrating agent-based models to simulate migration response or 

using multimodal deep learning models to integrate imagery, text, and structured 

data. Interactive urban dashboards could be developed for real-time monitoring of 

gentrification risks. Building on the work of Maya et al. (2024) and Thackway et al. (2023), 

who have used data science and urban studies research to show that gentrification prediction 

could become not just more descriptive but actionable, it is possible to imagine using new 

machine learning methodologies, including those with spatial considerations, to work towards 

a future of urban planning where instead of having to wait to intervene, until gentrification 

has already occurred, it would be possible to take pre-emptive action to ensure that 

neighborhoods can change without displacing residents (Credit, 2024) (Graff, 2020). To 

ensure ongoing efficacy of these interventions, a process of continuous impact assessments 

with periodic formal evaluations of AI systems’ decisions could be implemented (Marasinghe 

et al., 2024). Research into the application of conversational AI paradigms within urban 

digital twins is also needed, potentially offering interactive, human-centered dialogue for co-

designing interventions.  

 
Figure 8. Integration of predictive ML into digital twin systems for proactive and participatory urban planning. 
This approach could also enhance democratic decision-making processes by providing more 

inclusive and accessible interaction with urban data and AI models (Xu et al., 2024). This 

could avoid a potential pitfall of the process of algorithmic optimization whereby certain 

processes may be automated to a degree that circumvents any democratic input or say in the 

distribution of resources and the planning of urban spaces (Graff, 2020). The integration 

should not only focus on data processing but also on generating digital representations that 

can simulate potential interventions, allowing urban planners to see the potential impact of an 

intervention before it is carried out (Huang, 2024). The use of larger datasets with richer data 

points, including proprietary data from multiple sources, could help make more accurate 

predictions, though this will need to be carefully considered in terms of replicability and 

ethics, both in the use of such data as well as the broader epistemological questions of 

prediction (Graff, 2020). For example, in some prior work, basic statistical methods and 

factor analysis were used to pinpoint revitalization; using more advanced unsupervised 

learning methods could make gentrification predictions more nuanced (Graff, 2020). In 
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another example, the use of more high-resolution, longitudinal data that would allow for 

more up-to-date analysis and prediction such as real-time economic indicators and changes 

observable in street level imagery could also help with temporal granularity and prediction 

(Hawes, 2024) (Freitas et al., 2022).  

The development of scalable Digital Twin models for complex urban settings, including the 

implementation of advanced security measures and data privacy protections to safeguard 

sensitive urban data, is another important area for future work (El-Agamy et al., 2024). Going 

beyond prediction, the integration of generative AI into the digital twin concept, with smart 

city management moving from centralized, top-down governance to more efficient, bottom-

up participatory management via human-AI collaboration, with the enhanced intelligence in 

the smart city going beyond the more basic digital twin and becoming more self-learning and 

reasoning (Xu et al., 2024). These smart cities could self-generate data and even code to 

create their own digital twins, greatly accelerating and streamlining the process of digital twin 

creation for smart cities (Xu et al., 2024). This could greatly lower the cost of urban digital 

twins and allow urban planners to “state the design problem more accurately and/or to search 

a greater number of options, by including, for example, suggestions from AI-generated text 

and images” (Xu et al., 2024). These new capabilities, including the ability to generate 

synthetic data or even simulate various urban development scenarios, have the potential to 

transform urban planning by giving a greater context in which urban planners can make their 

decisions (Xu et al., 2024) (Xu et al., 2024). One example is the potential application of 

generative AI models within urban digital twins, to generate the urban designs autonomously. 
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