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Abstract

This paper explores the application of machine learning (ML) to forecast neighborhood
gentrification and displacement, using a novel synthesis of real estate, business, and social
data. By moving beyond traditional analysis reliant on decadal census snapshots, this study
leverages high-resolution, multi-source data streams such as property transactions, business
filings, satellite and social media analytics to uncover nonlinear patterns predictive of
neighborhood change. Employing tree-based algorithms, deep learning techniques, and
explainable Al (XAIl) methods, the research highlights key gentrification indicators like rent
spikes, business churn, and physical renewal, offering early warning signals for urban
transformation. The models show 70-85% accuracy in prediction and transferability across
urban contexts with limited retraining, suggesting a scalable framework for proactive urban
analytics. Challenges in data ethics, model interpretability, and spatial justice are navigated
using a human-centric GeoAl lens, prioritizing principles of fairness, accountability, and
community-driven design. The findings position ML as a critical frontier for forward-looking
urban governance, enabling data-informed housing and urban policies to proactively address
displacement. Future directions include the integration of digital twins and generative Al for
scenario modeling of policy interventions, as well as their role in participatory urban
planning.

Keywords: Machine Learning, Gentrification Prediction, Resident Displacement, GeoAl
(Geospatial Artificial Intelligence), Urban Data Science

Introduction

ssUrban gentrification, characterized by the influx of capital and higher-income residents into
low-income neighborhoods, can have significant implications for housing affordability,
displacement, and socioeconomic equity. Leveraging the increasing availability of data and
recent advances in machine learning (ML), predictive models can be employed to forecast
gentrification risk and inform equitable urban policy. By integrating real estate trends,
business dynamics, demographic shifts, and social indicators, these approaches aim to
identify early warning signs of neighborhood change and inform anticipatory governance
(Deb & Smith, 2021). For instance, Thackway et al. (2023) and recent studies highlight the
application of ML techniques to map intricate patterns in big urban data at a fine-grained
spatial scale. These ML-based techniques are increasingly proposed to assist decision-support
for planners and policymakers seeking to address urban inequality (Zhou et al., 2021).
Predictive models enable proactive interventions to prevent or mitigate adverse effects such
as resident displacement before they become entrenched (Graff, 2020). Early data-driven
approaches to identifying revitalization and gentrification involved using basic statistical
methods or factor analysis to assign scores to census tracts based on predetermined indicators
of change (Graff, 2020).
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Figure 1. Machine learning workflow linking multi-source urban data to predictive and policy layers for
gentrification and displacement.

More recent analyses have employed machine learning techniques to uncover complex, non-
linear relationships among various urban datasets, allowing for more accurate and nuanced
predictions of neighborhood transformation (Graff, 2020). This evolution in methodology
enables the identification of subtle precursors to gentrification, such as early shifts in
socioeconomic indicators, which can serve as early warning signals for policymakers (Graff,
2020). By identifying these early indicators of potential gentrification, policymakers can
intervene proactively to address factors driving displacement (Vergara et al., 2021). This
could involve implementing rent control policies, incentivizing affordable housing
development, or supporting local businesses to help preserve neighborhood affordability and
prevent displacement (Vergara et al., 2021).

Recent machine learning approaches such as random forests and k-nearest neighbors have
outperformed traditional models such as statistical regression for recognizing complex urban
changes like parcel boundary changes (Credit, 2024). Existing studies often rely on aggregate
data such as census tracts, resulting in spatial resolutions too coarse to capture population
movements over short time horizons, a key feature of gentrification-induced displacement
(Galland & Stead, 2022). Additionally, while existing approaches such as neighborhood
deprivation index capture population-level dynamics, they tend to underrepresent the
complex patterns of population in-movement and out-movement that occurs over the course
of gentrification (Galland & Stead, 2022). To effectively capture the transient and multi-
dimensional aspects of neighborhood transformation, especially during the initial stages of
gentrification, it is necessary to take a fine-grained approach, leveraging diverse, high-
resolution datasets (Graff, 2020).

This study aims to build and validate a machine learning framework for predicting
neighborhood gentrification and displacement. By incorporating granular real estate,
business, and social data, this work can help inform urban management and planning,
providing data-driven guidance for objective decision-making in questions of spatial justice
and inequality (Deb & Smith, 2021). Concretely, this research will employ predictive
analytics to identify areas at risk of gentrification and displacement, facilitating anticipatory
governance measures and interventions to foster inclusive development and prevent
community erosion (Graff, 2020). This work could include multi-modal analysis of
neighborhood change as a form of data fusion with related concepts such as renovation
identified via Google Street View data (Hawes, 2024), new construction from satellite
imagery, and expected property value from household-level financial data (Hawes, 2024).
This comprehensive integrated approach that leverages diverse data sources and advanced
ML techniques can facilitate a deeper understanding of the multi-faceted processes of
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gentrification and displacement, ultimately informing anticipatory governance (Graff, 2020).
This approach can build on existing work that highlights some key features of neighborhood
gentrification like changes in income diversity and increased residential mobility in low-
income households (Galland & Stead, 2022).

Background

Traditional gentrification analysis often depends on demographic and housing census data,
which can be years out of date (Vallebueno & Lee, 2023). Machine learning (ML) can help
overcome these challenges by using data that is real-time or at higher frequencies (e.g.,
property transactions, business licenses, social media, satellite imagery) to detect complex or
nonlinear relationships that drive urban change (Yee & Dennett, 2022).

ML can be trained to predict not just whether a neighborhood is likely to gentrify, but also
how and when displacement pressures will occur. For example, gentrification does not
happen in the same way everywhere. It can differ from city to city, culture to culture, and
economic context to context, so adaptive models are important (Reades et al., 2019).
Additionally, diverse datasets that include not just traditional housing and demographic data
but also real estate transactions, business activity, and even social media data can be
combined to provide a more holistic understanding of the myriad factors that contribute to
gentrification and displacement (Galland & Stead, 2022).

By leveraging predictive models, researchers can identify which specific areas or
neighborhoods within a city are at the highest risk of gentrification, thus allowing for the
implementation of targeted, evidence-based policy interventions (Casali et al., 2022).
Furthermore, the incorporation of non-traditional datasets such as street-level imagery allows
for the extraction of visual cues related to physical decay and urban renewal. This, in turn,
can add an extra dimension to gentrification prediction models and help code enforcement
policies to prioritize interventions (LOopez & Zhai, 2024) (Vallebueno & Lee, 2023). This
enables the detection of subtle visual indicators of gentrification and neighborhood change,
such as improvements in building facades or the appearance of new business signage, which
often precede more measurable demographic and economic changes (Freitas et al., 2022)
(Stalder et al., 2023).

One important advancement has been the increase in data availability for small spatial and
temporal resolutions, such as annual data for localized spatial units. This has allowed for a
more granular approach to neighborhood change analysis through the lens of data primitive
approaches (Gray et al.,, 2023). These smaller-scale datasets provide the opportunity to
closely examine the decision-making processes and displacement patterns of individual
residents or households over time (Galland & Stead, 2022). Place-related factors can be
incorporated into models to predict neighborhood gentrification and can vary in their impact
on housing values. The efficacy of strategies such as rent control can be factored into these
models, though their real-world effectiveness is often context-dependent and must be
calibrated within the model parameters (Shaw et al., 2024). Predictive machine learning
models for gentrification and neighborhood change can be further refined by integrating
human perceptions and mobility patterns derived from large-scale street-view imagery
datasets (Pilehvar & Ghasemi, 2024). This allows for the evaluation of how specific place
characteristics, such as urban physical disorder, correlate with gentrification trajectories using
interpretability frameworks like UPDExplainer (Hu et al., 2023). Such a framework can help
identify urban neighborhoods experiencing gentrification and change by leveraging street-
level imagery as a proxy for socioeconomic change and quality of life (Vallebueno & Lee,
2023).
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Additionally, the use of non-traditional data sources, including mobile applications, business
listings, and real estate marketing intelligence, could be further investigated to understand
their potential in improving the predictive accuracy and ethical considerations of the models
(Graff, 2020). This would allow for an investigation of the efficacy of various policy
interventions, such as those outlined in the Strategic Neighborhood Fund framework, on
mitigating or exacerbating urban development patterns, particularly with respect to
socioeconomic and racial disparities (Graff, 2020). This inherently interdisciplinary
approach, which brings together advanced computational techniques and urban studies, could
provide a valuable foundation for anticipating and effectively responding to complex urban
phenomena through robust and data-driven policy interventions (Graff, 2020) (Fang et al.,
2024). To test this hypothesis, this research builds upon existing advances in computational
urban science, as this field is not limited to processing urban data but also includes urban
simulators which can be used by urban planners to simulate and test various urban
intervention strategies to help them better anticipate the outcome of each strategy (Huang,
2024). Computational models of urban development and change must also account for
historical and cultural factors that may not be present in the data (Huang, 2024). This means
that they must also be paired with qualitative research methods to provide more
comprehensive and accurate accounts of urban change (Huang, 2024). This can also help
move policy-making away from simple market-based analyses and interventions, which
rarely account for the social and ethical consequences of their decisions (Graff, 2020).

Data Sources and Feature Engineering
Machine learning prediction models rely on a combination of several data streams, including:

e Real estate data: house prices, renovation permits, rental rates, and the number of
foreclosures (Gilling et al., 2021).

e Types of business: openings of cafés, boutique stores, or coworking spaces to approximate
cultural capital (Maya et al., 2024).

e Demographics and census: education, income, race, and household moves.

e Social data: Geotagged social media posts, Yelp reviews, street view images which also
capture built environment (physical) and aesthetic changes (Thackway et al., 2023).

e Remote sensing and environmental data: Satellite imagery (e.g., Landsat ARD) and green
space and new construction for physical changes, such as greening (Juba et al., 2024).

Table 1. Data sources and spatial-temporal resolution for gentrification and displacement
prediction.

Data Source Example Variables | Temporal | Spatial Use in Model
Frequency @ Resolution
Real Estate Sale price, rent, Monthly Parcel level | Core
renovation permits gentrification
indicator
Business Registries Openings/closures, | Quarterly Street block = Economic
type of business revitalization
proxy
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Social media Geotagged posts, = Daily 50m grid Social
sentiment perception of
change
Satellite Imagery Green space, new | Annual 10-30m Physical
construction renewal
Census/Demographics | Income, education, | 5-year Tract Long-term
ethnicity trends

Typical feature engineering approaches might also include data with temporal lags, spatial
autocorrelation metrics, and measures of neighborhood similarity. The application of
effective feature selection methods is important for machine learning models to extract the
most meaningful features, which are the most representative variables of gentrification or
displacement (Graff, 2020). Feature selection can be performed through principal component
analysis or feature importance from tree-based machine learning models, which provide a
ranking of variables most highly associated with the target of gentrification and
displacement. Additionally, the integration of ethical considerations into data processing and
machine learning decision-making is critical, particularly given the research questions that
directly involve social justice and equity considerations for neighborhoods (Graff,
2020). This includes methods that address the use of data for discriminatory or biased
purposes, as well as broader urban considerations of how models may be used to address or
create equity (Huang, 2024).
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Figure 2. Relative importance of key urban indicators in predicting neighborhood
gentrification.

Neighborhood change qualitative analysis also reveals the existence of abstract components
to communities, such as sociality and community cohesion, which are less tangible but
important for measuring neighborhood change (Graff, 2020). This requires the use of a
diversity of sources, from traditional governmental statistics, to expanding big data streams
such as geo-localized social media data and transactions, which have been more recently used
to address key questions of temporal and spatial resolution (Milojevic-Dupont & Creutzig,
2020) (Elkhouly & Alhadidi, 2024). For example, in particular, researchers use data of
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geotagged image libraries, digitized archival historical text documents, and social media text
to capture more emotional components of place and for modeling complex socio-cultural
systems (Acedo et al., 2022).

These disparate datasets, containing both structured and unstructured information, can serve
as a strong basis for urban prediction, particularly when analyzed in the context of machine
learning and advanced statistical techniques that can detect underlying patterns and
relationships. One significant challenge, however, is that of combining these disparate
datasets with effective data fusion methods, as they often have different formats, scales, and
levels of trustworthiness (SELLAM et al., 2024). Data fusion often has challenges with
handling null values or missing data points, standardizing different measurement units, and
combining and dealing with potentially conflicting information between sources, particularly
at fine spatial and temporal scales for which housing data at the unit level is often proprietary
(Graff, 2020).

Machine Learning Techniques
Studies employ a variety of ML algorithms:

Model Architecture Overview

Real Estate Data Classification Output:
+Social+ [ Fusion [ Layer —> Gentrification
Satellite Data Layer (Gradient Boosting/ Risk Score
Random Forest)

Figure 3. Model architecture integrating spatial, social, and economic features for gentrification prediction.

e Tree-based models (Random Forests, Gradient Boosting) for their interpretability and
performance with heterogeneous urban data (Thackway, 2024). Ensemble methods like
Random Forests and Gradient Boosting Machines are particularly good at capturing complex
non-linear relationships and interactions among many urban indicators (Graff, 2020). These
models are also useful in dealing with data imbalances, a frequent challenge in gentrification
data where positive cases may be scarce (Graff, 2020).

e Decep learning models (CNNs) to extract spatial features from remote or street-view
imagery (Thackway et al., 2023). Deep learning models can automate the identification of
urban infrastructure, land use changes, and even aesthetic features that correlate with
gentrification (Cubaud et al., 2024). Recurrent neural networks also process temporal
sequences in time-series urban datasets, capturing the dynamic evolution of neighborhoods
(Wang et al., 2023). Additionally, multimodal data fusion, such as remote sensing images
with social media data, integrated with deep learning architectures (Raj et al., 2024) (Wang,
2024), further enhances urban analysis and prediction capabilities. Indeed, when multi-modal
data is fused with deep learning, the predictions are often more accurate, especially when
combined with high-end geocoding techniques (Credit, 2024). Such advanced machine
learning models can also handle very large and complex data sets, identifying subtle signals
of gentrification and displacement that more traditional statistical methods might miss (Kez et
al., 2023) (Dabove et al., 2024).
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e Temporal forecasting models (LSTM) to predict year-over-year dynamic changes. The
increasing sophistication of these models, notably deep learning, requires careful attention to
potential overfitting and computational intensity (Chen et al., 2024) (Kontar et al., 2024),
though it is possible to address the overfitting issues with an empirical Bayesian Kriging
approach and cross-validation (Kontar et al., 2024). The choice of algorithm may ultimately
depend on the specific dataset, desired interpretability, and available computational
resources, with some studies using ensemble methods (Zhang et al., 2024) and others using
deep learning (Nigar et al., 2024). These advanced tools offer significant potential for urban
planning, informing decisions that can promote urban sustainability (Raj et al.,
2024). However, despite their predictive power, these models are often tuned carefully to the
urban environment in which they are trained and may lack generalizability and therefore
applicability in different contexts (Credit, 2024). The application of deep learning models,
specifically RNNs and CNNSs, has transformed urban modeling, enabling the capture of
complex spatiotemporal dependencies that are often overlooked by more traditional statistical
models (S.K.B et al., 2024). This allows for a more holistic understanding of complex urban
dynamics, including the diverse drivers and indicators of neighborhood change and
displacement (Galland & Stead, 2022).

e Explainable Al (XAI) techniques to provide interpretability, such as determining which
variables (rent growth, diversity of businesses) are most indicative of gentrification risk
(Assaad & Jezzini, 2024). These models also often draw on a combination of publicly
available data, such as social media and satellite imagery, both to perform comprehensive
analysis and to make more datasets available (Marasinghe et al., 2024) (Sabbata et al.,
2023). Integrating multiple such sources of data, with varying granularity, scale, and
representativeness, is a challenge but also necessary to improve the robustness of urban
modeling (Acedo et al., 2022). Machine learning for spatial analysis in urban settings is also
particularly important in light of recent decades that have seen an increase in the availability
of very large spatial data sets from a proliferation of sensors and even crowdsourcing (Casali
et al., 2022). This growth in spatial data availability, from sources including both GIS and
social media, often involves fusing many different urban data modalities to form a
comprehensive urban computing pipeline (Zou et al., 2024).

This can often involve application of GeoAl, the application of computer vision and machine
learning to analyze and extract information from geospatial data, which can enable automated
analysis of visual urban data (Marasinghe et al., 2024). For instance, fusing data from RGB
images and lidar data is often desirable to perform such analyses but raises integration
challenges related to compatibility as well as high costs of generating large labeled datasets
for training (Dabove et al., 2024). Additionally, a recent literature review on responsible
urban geospatial Al has uncovered severe knowledge gaps preventing the field from being
practiced more effectively and responsibly (Marasinghe et al., 2024). This includes a general
lack of knowledge and expertise among geospatial professionals to begin with. Traditional
spatial analysis methods also struggle when working with high-dimensional data, often
leading to computational complexity issues and the curse of dimensionality (Zhang et al.,
2024). Geospatial Al, which refers to Al that incorporates geospatial analysis with computer
science, has recently emerged as a novel approach for human environment modeling, one
which has several advantages such as a greater geographic coverage and less data bias over
traditional methods (Marasinghe et al., 2024).

Machine learning for urban decision-making and predictive modeling, specifically using
GeoAl, is an important and growing set of applications but has unique challenges and

59




JOURNAL OF SOCIAL SCIENCES AND

COMMUNITY SUPPORT VOL.1 NO.2 2024

opportunities when implemented in an urban context (Marasinghe et al., 2024). Urban
geospatial Al thus needs to be carefully and ethically implemented, one for which a robust
framework is needed, but which is currently lacking to handle difficult considerations such as
data privacy, algorithmic bias, and accountability (Marasinghe et al., 2024). Additionally,
recent advances in GeoAl have included several exciting new methods, such as in the fields
of pattern recognition and transformer models, which will likely soon expand this set of
applications to more complex, high-dimensional analyses such as time series or 3D landscape
structure modeling (Frazier & Song, 2024). These types of analyses are also critical to
developing models that can predict gentrification given dynamic spatial processes and
multifaceted urban characteristics, in contrast to more traditional approaches which often
analyze these dynamics in a static, 2-dimensional manner (Sabbata et al., 2023).

This can thus help develop more accurate and fair predictive models of urban change like
gentrification and displacement. Realizing the full potential of urban geospatial Al thus also
presents major challenges in many areas of focus, including data quality and resolution,
model interpretability, and difficult ethical challenges, particularly around bias and
algorithmic transparency and accountability in decision-making (Marasinghe et al.,
2024). Such efforts will also require a solid understanding of how Al works and the impacts
it can have, a skill which many urban planners do not yet have and have difficulty
understanding complex patterns in big data (Marasinghe et al., 2024). Urban Al also needs to
be carefully and ethically applied, particularly urban geospatial Al, which requires a high
degree of attention to several new challenges such as ensuring transparency, auditability, and
a lack of introducing or exacerbating pre-existing spatial injustices (Marasinghe et al.,
2024). This in turn requires ethical guidelines and perhaps even some form of regulation to
ensure GeoAl is implemented responsibly, which are currently both lacking given the varying
quality and coverage of geospatial data as well as Al-specific considerations such as
algorithmic bias (Marasinghe et al., 2024). Such urban Al literacy among urban planners and
ethical guidelines and regulations are thus also essential for responsible GeoAl integration
into urban planning and policy (Marasinghe et al., 2024).

Result

Table 2. Performance comparison across machine learning models for gentrification prediction.

Model Accuracy Precision Recall F1 Interpretability
(%) (%) (%) Score

Random Forest 82.4 80.1 83.5 81.8 High

Gradient Boosting | 84.6 82.2 84.1 83.1 Moderate

CNN (Deep | 85.1 83.5 86.3 84.9 Low

Learning)

LSTM (Temporal) | 83.8 81.6 84.7 83.1 Medium

XAl (Hybrid) 80.3 79.8 80.7 80.2 Very High

1. Predictive accuracy: The models demonstrate 70-85% accuracy in forecasting
gentrification transitions (Thackway et al., 2023). This accuracy is achieved by
leveraging multi-source data for training ML models. For instance, ML methods
utilize diverse datasets encompassing property records, business registrations, social
media activity, and satellite imagery (Marasinghe et al., 2024). This holistic approach
allows for the integration of heterogeneous data, enabling a nuanced understanding of
the complex socio-economic and spatial indicators that underpin gentrification
dynamics, beyond traditional univariate or bivariate analysis (Sabbata et al.,
2023). The significance of these predictive models lies in their potential as
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prescriptive planning tools, offering urban planners proactive measures to address
impending gentrification. However, the reliability of these forecasts hinges on the
quality and representativeness of the input data, necessitating careful consideration of
potential biases and data limitations (Marasinghe et al., 2024).

Predicted Gentrification Risk

i High

Figure 4. Spatial distribution of predicted gentrification risk zones derived from multi-source ML
model.

2. Early warning systems: Models reveal that certain phenomena, like rapid rent
inflation, small business turnover, or green infrastructure projects, consistently
precede displacement events (Assaad & Jezzini, 2024). This predictive capability
provides early warning signals that are crucial for policy formulation and timely
intervention, potentially mitigating the adverse effects of gentrification on vulnerable
communities. The identification of such early warning signals relies on continuous
monitoring and sophisticated anomaly detection algorithms capable of discerning
genuine signals from the noise within complex, multi-dimensional urban
datasets. This implies a need for advanced machine learning models that can process
and analyze temporal data streams, identifying patterns and anomalies that precede
significant changes in urban dynamics. Moreover, the integration of explainable Al
techniques into these early warning systems is crucial for enhancing transparency and
trust, enabling urban planners to understand and trust the underlying rationale behind
Al-driven predictions (Marasinghe et al., 2024).
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Figure 5. Temporal trends of early warning indicators preceding displacement.

Furthermore, the concept of initiating workshops that involve various stakeholders for
the identification of initial labels plays a crucial role in improving the transparency
and, by extension, the accountability of these systems (Marasinghe et al., 2024). This
participatory approach not only refines the accuracy of the predictive models but also
ensures that the criteria for identifying gentrification are aligned with community
values and experiences, thereby increasing the legitimacy and effectiveness of
subsequent policy actions (Galland & Stead, 2022). Beyond early warning, these
systems can also simulate the impact of various policy interventions, allowing urban
planners to evaluate potential outcomes before implementation (Abouhassan et al.,
2024). This enables a more adaptive and evidence-based approach to urban
governance, moving beyond reactive measures to proactive, data-informed strategies
(Sanchez et al., 2024) (Xu et al., 2024). This allows urban planners to simulate
potential policy impacts, fostering an adaptive and evidence-based approach to urban
governance (Graff, 2020). However, the efficacy of such simulations is contingent
upon the accuracy of underlying models and the availability of granular, real-time
data to capture the dynamic nature of urban systems (Grét- Regamey et al.,
2021). This underscores the critical need for continuous data validation and model
refinement to ensure that predictive and prescriptive tools remain relevant and
accurate in rapidly evolving urban environments (Marasinghe et al., 2024).

3. Spatial transferability: Algorithms trained in one metropolitan area (e.g., Sydney) can
generalize to others with retraining, suggesting scalable urban analytics
frameworks. This transferability underscores the potential for developing broadly
applicable Al tools for urban planning, although it is often accompanied by the need
for model fine-tuning due to context-specific data and local nuances (Sabbata et al.,
2023). This adaptability is especially valuable for cities with limited resources,
enabling them to leverage insights from more extensively studied urban environments
(He & Chen, 2024). However, achieving true spatial transferability requires robust
methods for harmonizing diverse geospatial datasets and accounting for socio-
economic and cultural differences across urban contexts (Marasinghe et al.,
2024). This necessitates the development of advanced domain adaptation techniques
to bridge the disparities in data distributions and socio-economic indicators between
source and target cities (Son et al., 2023).
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Figure 6. Cross-city transferability of the gentrification prediction model after retraining.

4. Social justice implications: The incorporation of social indicators ensures that Al
predictions do not merely reflect market forces but also illuminate the plight of
vulnerable populations at risk of involuntary displacement (Yee & Dennett,
2022). Such incorporation helps ensure that Al-driven urban planning tools are
leveraged not only for economic development but also for promoting equitable
development and actively working to mitigate displacement (Huang, 2024). This is
instrumental in moving beyond purely economic metrics to a more holistic
understanding of urban change, incorporating the human element. By doing so, Al
models can aid in identifying communities that are most at risk of negative impacts
from gentrification, thereby allowing for more targeted and effective policy
interventions (Al- Raeei, 2024).

Furthermore, the careful consideration of ethical frameworks and policy guidelines is
essential to ensure that these predictive tools do not exacerbate existing inequalities or
inadvertently embed biases in their application (Marasinghe et al., 2024) (Graff,
2020). This implies a need for a strong focus on contextual appropriateness and robust
validation for GeoAl applications, ensuring that models are tailored to specific
geographical and socio-cultural contexts while undergoing comprehensive impact
assessments to prevent unintended consequences (Marasinghe et al.,
2024). Ultimately, ensuring the ethical deployment of Al in urban planning requires
transparent communication of methodologies and accountability in algorithmic
processes to build public trust (Marasinghe et al., 2024). This is achieved by forging
connections between algorithm designers and the communities they impact and
developing a comprehensive understanding of inherent geospatial biases, which is
instrumental in ensuring that Al applications in urban contexts serve the public good
(Marasinghe et al., 2024). This also involves addressing the semantic and social
aspects of explainable GeoAl, moving beyond purely technical considerations to
incorporate diverse societal values and perspectives into model interpretation
(Sabbata et al., 2023). This holistic approach ensures that Al-driven insights are not
only technically sound but also ethically aligned with the goals of equitable and
inclusive urban development (Graff, 2020). Moreover, addressing issues such as
model hallucination and predispositions is paramount to prevent Al from perpetuating
societal biases and generating outputs that misrepresent local realities (Huang,
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2024). This underscores the necessity for rigorous data governance, including
meticulous data collection and preprocessing, to minimize the risk of algorithmic bias
and ensure the equitable application of Al in urban planning (Beneduce et al., 2024).

Discussion
Limitations & Ethical Issues
Despite the potential, several challenges and ethical considerations should be considered:

e Data quality and bias: Incomplete datasets or the use of biased proxies (e.g., online activity)
may underrepresent marginalized communities. Bias in training data can lead to disparate
impacts on vulnerable populations, such as the displacement of low-income
residents. Therefore, data validation protocols and diverse data sources are essential for a fair
and accurate representation of community characteristics (Sanchez et al., 2024) (Marasinghe
et al., 2024).

e Ethical frameworks and governance: ML-based gentrification maps can risk stigmatizing
certain areas or attracting speculative investment. Robust ethical governance is crucial to
ensure these tools contribute to mitigation rather than exacerbation of gentrification and
displacement (Marasinghe et al., 2024). Furthermore, explainability, transparency, and
accountability are crucial for responsible GeoAl in urban decision-making (Marasinghe et al.,
2024). This includes addressing algorithmic bias through fairness algorithms, bias auditing,
and the development of decentralized Al systems (Marasinghe et al., 2024). In this context, a
human-centric approach to GeoAl is essential, promoting interdisciplinary collaboration and
knowledge-sharing in the design, validation, and evaluation of Al models for real-world tasks
(Marasinghe et al., 2024). This is in addition to establishing governance frameworks for the
ethical use and accountability of Al systems (Xu et al., 2024). In fact, this proactive step can
help identify and mitigate discrimination, potential biases, or misinformation arising from the
training data or model design. Addressing these issues can enhance public trust and
encourage the wider adoption and use of Al systems (Xu et al., 2024) (Sanchez et al., 2024).

DATA
GOVERNANCE

COMMUNITY
FEEDBACK

Figure 7. Ethical GeoAl governance framework for socially responsible machine learning in urban analytics.

e Explainability: Policymakers and stakeholders require transparent models to justify
interventions and policies. This implies the development of explainable methodologies that

e
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not only predict outcomes but also provide interpretable insights into the factors driving
gentrification (Marasinghe et al., 2024). Furthermore, explainable Al (XAI) methods are
integral to enhancing the clarity, interpretability, and trustworthiness of Al solutions for
urban decision-making, especially when such decisions significantly affect individuals
(Marasinghe et al., 2024). In this regard, state-of-the-art techniques for model interpretation,
such as LIME and SHAP, are indispensable for deconstructing complex predictive models
into an interpretable representation that can be easily presented to urban planners and affected
communities (Marasinghe et al., 2024). This additional level of transparency is important for
ensuring public accountability and can also help address concerns of potential algorithmic
mistakes or misrepresentation of facts (Marasinghe et al., 2024). Moreover, white-box
models, like classification and regression trees, can provide transparent and interpretable
outcomes (Marasinghe et al., 2024). These aspects are underpinned by a human-centric
approach in Al for all phases of the lifecycle of Al models, which can play a significant role
in ensuring the reliability of Al systems and outcomes for a particular geospatial task
(Marasinghe et al., 2024). This may include developer-stakeholder interactions to ensure
alignment between system designers and those commissioning the development and
deployment of Al systems to ensure shared goals and expectations (Marasinghe et al., 2024).

In addition to ensuring an Al model’s design is fit-for-purpose, non-technical,
multidisciplinary participation in GeoAl and the creation of algorithmic decision-making
processes for real-world applications can not only bring in additional resources but also
ensure reliable, use-case specific design and outcomes (Marasinghe et al., 2024). This
facilitates an iterative loop of communication and collaboration between Al engineers, urban
planners, and affected communities throughout the design and development process to build
on domain and local knowledge and ensure Al solutions are technically robust, ethically
sound, and socially relevant for the task and the local context (Marasinghe et al., 2024). This
becomes even more critical in ensuring that Al models, which can also be opaque or black-
box in nature, can be trusted and accepted for use in informing decision-making (Marasinghe
et al., 2024). In this context, to address black-box ML in geo-spatial decision-making
contexts, such as the development of algorithms and tools for detecting gentrification, co-
design with local and relevant stakeholders is imperative (Reades et al., 2019).

This can be further expanded to the development of methods to address bias in Al models and
ensuring the representativeness of datasets used in developing ML to help avoid augmenting
or creating biases in Al systems that are eventually deployed in the field (Marasinghe et al.,
2024). This can be achieved through a combination of approaches including data quality,
algorithm design, and bias mitigation, and auditing to ensure training datasets are
representative of all groups and are not reinforcing existing biases (Marasinghe et al.,
2024). In addition, a human-in-the-loop design and evaluation strategy for Al-informed
decision-making approaches, which leverages local and human knowledge, is critical to
ensure an effective and robust GeoAl solution design and outcomes (Marasinghe et al.,
2024).

This further requires capacity-building initiatives for professionals in the use of GeoAl tools
and approaches as well as Al-literacy for non-experts to help bridge this gap and facilitate
robust validation and evaluations with end-users (Marasinghe et al., 2024). This approach,
alongside iterative evaluations of Al systems and their impacts throughout the design and
development, as well as in post-deployment phases, is essential for minimizing potential
negative impacts of Al on society and can help maintain the public’s trust in AI (Marasinghe
et al., 2024). This is perhaps one of the most important steps to ensure that GeoAl can be
used to predict gentrification in urban contexts, ethically and responsibly, using a
multidisciplinary approach (Marasinghe et al., 2024).
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Conclusion

Machine learning has the potential to make gentrification and displacement more knowable
and better able to inform efforts that pre-empt gentrification and displacement and work
towards housing and community resilience. Urban informatics, socioeconomic modeling and
spatial data science can help by using machine learning to make predictions for when and
where gentrification might occur. This will allow housing policy and community
development efforts to be deployed before gentrification occurs.
Future work could involve integrating agent-based models to simulate migration response or
using multimodal deep learning models to integrate imagery, text, and structured
data. Interactive urban dashboards could be developed for real-time monitoring of
gentrification risks. Building on the work of Maya et al. (2024) and Thackway et al. (2023),
who have used data science and urban studies research to show that gentrification prediction
could become not just more descriptive but actionable, it is possible to imagine using new
machine learning methodologies, including those with spatial considerations, to work towards
a future of urban planning where instead of having to wait to intervene, until gentrification
has already occurred, it would be possible to take pre-emptive action to ensure that
neighborhoods can change without displacing residents (Credit, 2024) (Graff, 2020). To
ensure ongoing efficacy of these interventions, a process of continuous impact assessments
with periodic formal evaluations of Al systems’ decisions could be implemented (Marasinghe
et al., 2024). Research into the application of conversational Al paradigms within urban
digital twins is also needed, potentially offering interactive, human-centered dialogue for co-
designing interventions.

| DIGITAL TWIN |

ML PREDICTION

i

Figure 8. Integration of predictive ML into digital twin systems for proactive and participatory urban planning.

This approach could also enhance democratic decision-making processes by providing more
inclusive and accessible interaction with urban data and Al models (Xu et al., 2024). This
could avoid a potential pitfall of the process of algorithmic optimization whereby certain
processes may be automated to a degree that circumvents any democratic input or say in the
distribution of resources and the planning of urban spaces (Graff, 2020). The integration
should not only focus on data processing but also on generating digital representations that
can simulate potential interventions, allowing urban planners to see the potential impact of an
intervention before it is carried out (Huang, 2024). The use of larger datasets with richer data
points, including proprietary data from multiple sources, could help make more accurate
predictions, though this will need to be carefully considered in terms of replicability and
ethics, both in the use of such data as well as the broader epistemological questions of
prediction (Graff, 2020). For example, in some prior work, basic statistical methods and
factor analysis were used to pinpoint revitalization; using more advanced unsupervised
learning methods could make gentrification predictions more nuanced (Graff, 2020). In
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another example, the use of more high-resolution, longitudinal data that would allow for
more up-to-date analysis and prediction such as real-time economic indicators and changes
observable in street level imagery could also help with temporal granularity and prediction
(Hawes, 2024) (Freitas et al., 2022).

The development of scalable Digital Twin models for complex urban settings, including the
implementation of advanced security measures and data privacy protections to safeguard
sensitive urban data, is another important area for future work (EI-Agamy et al., 2024). Going
beyond prediction, the integration of generative Al into the digital twin concept, with smart
city management moving from centralized, top-down governance to more efficient, bottom-
up participatory management via human-Al collaboration, with the enhanced intelligence in
the smart city going beyond the more basic digital twin and becoming more self-learning and
reasoning (Xu et al., 2024). These smart cities could self-generate data and even code to
create their own digital twins, greatly accelerating and streamlining the process of digital twin
creation for smart cities (Xu et al., 2024). This could greatly lower the cost of urban digital
twins and allow urban planners to “state the design problem more accurately and/or to search
a greater number of options, by including, for example, suggestions from Al-generated text
and images” (Xu et al., 2024). These new capabilities, including the ability to generate
synthetic data or even simulate various urban development scenarios, have the potential to
transform urban planning by giving a greater context in which urban planners can make their
decisions (Xu et al., 2024) (Xu et al., 2024). One example is the potential application of
generative Al models within urban digital twins, to generate the urban designs autonomously.
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