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Abstract s 

The exponential growth in slums across developing megacities is one of the most pervasive 

and pressing issues of the 21st century. The inability of infrastructure and services to keep 

pace with rapid urban migration is increasingly becoming the norm. Traditional mechanisms 

of surveying urban population, based on expensive and time-consuming censuses, or 

laborious ground-sampling are not scalable or often too late for pre-emptive action. This 

study proposes a scalable approach to predicting urban dynamics at sub-city scales by 

marrying Machine Learning (ML) with multi-spectral satellite data to predict intra-urban 

migration patterns and likely new slum development or expansion. 

Our approach utilizes high-resolution multi-temporal satellite imagery data (Sentinel-2, 

Landsat) and high-resolution commercial imagery (Maxar, Planet Labs) in a two-pronged 

analysis. Initially, we will conduct a computer vision-driven semantic segmentation of the 

urban environment using Convolutional Neural Networks (CNNs) to identify and map 

current slum areas based on a composite of visual features such as building density, roof 

types, road network patterns, and lack of vegetation cover. Following this, we will engineer a 

comprehensive spatiotemporal dataset, extracting a host of time-variant and invariant 

features, including: 

● Physical Indicators: Night-time light intensity, land surface temperature anomalies, 

vegetation index (NDVI), and built-up density (NDBI). 

● Accessibility Metrics: Distance to employment centers, transport infrastructure, and 

existing slums. 

● Socio-economic Proxies: Employment density, environmental risk factors, and land value. 

The resulting dataset will train and test predictive ML models, framed as a classification 

problem (predicting high-risk pixels or zones for transition to slums) and a regression 

problem (estimating the rate of informal settlement densification). Ensemble methods 

(Random Forest, Gradient Boosting Machines like XGBoost), and sequence models 

(Recurrent Neural Networks like LSTMs) will be evaluated to capture the complex, non-

linear precursors to slum formation. Training will involve historical data from a rapidly 

urbanizing city, teaching the model the signature of urban change that led to slum 

developments, and then tested on temporal and spatial data that is held out. 

The ultimate deliverable of this work is a dynamic, high-resolution risk map of potential sites 

for future slum development. This forward-looking approach is a paradigm shift in slum and 

urban risk governance from a reactive to a pre-emptive framework. The results of this study 

will arm urban planners, policy makers and humanitarian organizations with an early-warning 

signal to target infrastructure investment and land-use zoning before expansion occurs, and to 

pre-emptively provide urban services such as water, sanitation, and housing, helping to steer 

urban growth towards a more sustainable, resilient and inclusive future. 
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Introduction 
The accelerating trend of global urbanization observed in recent decades has been particularly 

remarkable in developing countries, resulting in an unprecedented expansion of urban 

areas. This expansion has often taken the form of informal settlements (Ansari et al., 

2020). Informal settlements, colloquially known as slums, are densely populated urban areas 

characterized by substandard housing, insecure tenure, and lack of access to basic services 

(Fallatah et al., 2022). The growth of these informal settlements is not only rapid but also 

haphazard in many developing megacities, posing a formidable challenge to municipal 

authorities in terms of sustainable urban planning and resource allocation (Park et al., 

2025). This study is particularly motivated by the dearth of reliable and contemporaneous 

data on the spatio-temporal dynamics of informal settlements in these rapidly urbanizing 

regions, a deficit that significantly impedes targeted and effective policymaking (Raj et al., 

2024).  

Traditional methodologies for the ongoing monitoring of urban expansion and informal 

settlement proliferation, often labor-intensive ground surveys or the periodically collected 

census data, are frequently outpaced by the dynamism of urban growth. By the time this data 

is compiled and processed, the ground realities are often changed, rendering such 

methodologies inefficient for the fast-paced dynamics of these areas (Ansari et al., 

2020). However, the recent convergence of machine learning with remote sensing 

methodologies has shown great promise in bridging this gap (Gram-Hansen et al., 2019) (Liu 

et al., 2019). Machine learning-based approaches to remote sensing have the potential to be 

scalable, cost-effective, and offer more frequent and up-to-date monitoring of these rapid 

urban changes (Gram-Hansen et al., 2019) (Liu et al., 2019). Cutting-edge deep learning 

models trained on satellite images have the potential to provide high-accuracy and quasi-real-

time maps of informal settlements, a critical capability for enabling the necessary 

infrastructure development, resource allocation, and service delivery in these vulnerable 

communities. Thus, the research intends to address this critical data gap by developing a 

reliable prediction framework that can anticipate patterns of intra-urban migration and the 

resulting emergence of informal settlements.  

This framework capitalizes on the rich information embedded in multi-temporal satellite 

images to capture these urban dynamics, allowing the proactive identification of areas that 

may be prone to informal settlement development, as opposed to retrospective analysis. This 

provides a huge improvement over the status quo, as the intense, heterogeneous, and 

continuous morphological changes of informal settlements have proven challenging to map 

(Ambugadu & Hosni, 2022). In addition, this study will incorporate machine learning-driven 

remote sensing approaches that allow for consistent, repeatable monitoring over time. This 

will be important for tracking progress in attaining Sustainable Development Goal 11.1, 

which aims to ensure access to adequate housing and basic services for all and to upgrade 

slums (Büttner et al., 2025). To this end, this study will focus on creating a new machine 

learning framework that integrates multi-temporal satellite imagery from satellite images with 

a variety of geospatial datasets to predict intra-urban migration patterns and the resulting 

formation of informal settlements, with a particular focus on developing megacities. In 

particular, the framework will focus on detecting the early leading indicators of expansion 

and densification of these informal settlements to gain the predictive power that is key to 

mitigating their negative socio-economic and environmental effects.  
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Figure 1. Major Developing Megacities with Rapid Informal Settlement Growth (2000–

2025). 

In addition, the framework will also be used to assess the performance of a variety of 

machine learning models, including deep learning models, in detecting the subtle 

spatiotemporal signals that are often the signatures of these informal settlements in 

developing countries (Li et al., 2023) (Fan et al., 2022). In all, this research will be used to 

gain a more nuanced understanding of these urban processes and to gain important and 

actionable insights that can be used to promote more inclusive and sustainable urban 

development. This study is also in line with one of this research group’s bigger goals, which 

is to contribute to empowering sustainability by providing deep learning and remote sensing 

solutions for urban monitoring and mapping that can be used to build more sustainable and 

resilient cities (Salem & Tsurusaki, 2023). This work is, therefore, an important contribution 

to achieving the Sustainable Development Goal of building sustainable and resilient cities for 

the future. The discussion section offers a comprehensive summary of this study’s most 

significant discoveries, encapsulating their essence and implications. It accentuates the 

effectiveness of remote sensing imagery and deep learning algorithms, particularly the U-Net 

convolutional neural network architecture, in the accurate categorization of land covers 

within rapidly transforming urban landscapes. The use of multi-temporal data from the 

BigEarthNet dataset and the incorporation of transfer learning in this approach serve to 

substantially improve the accuracy and efficiency of urban monitoring and mapping 

efforts. The skip connections within the U-Net design are specifically of importance in 

preserving detailed spatial information while fusing in more general contextual cues, 

ultimately leading to the highly accurate and finely detailed segmentation results that are 

characteristic of land cover classification (Fan et al., 2022). 

 

Literature Review 
It is precisely this ability to detect both fine-grained local features as well as broader context 

that underpins their success at discriminating between different urban land cover classes, 

including informal settlements (Dabove et al., 2024). By enhancing feature extraction and 

fusion processes, the use of contourlet transforms in conjunction with U-Net architecture can 
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further exploit textural and spatial details to improve informal built-up detection (Raj et al., 

2024). These advanced deep learning architectures can be integrated with very-high spatial 

resolution satellite imagery to precisely delineate land boundaries and capture complex 

spatial relationships within urban landscapes, providing valuable insights into the interplay of 

socioeconomic and environmental factors that drive urban development (Chen et al., 2023).  

Furthermore, by automating the analysis process, these deep learning algorithms eliminate 

the need for costly and time-consuming manual data processing, thereby enabling more 

efficient and scalable urban monitoring efforts across large geographic areas. This scalability 

is particularly crucial for characterizing the dynamic and expansive growth of developing 

megacities that may lack the resources to conduct traditional, large-scale urban surveys and 

that are, therefore, at a higher risk of infrastructural and service delivery failures if slums are 

not adequately monitored for timely intervention. The flexibility of these models, particularly 

those leveraging transfer learning approaches, further attests to their suitability for the highly 

variable and evolving nature of slum environments, ensuring their robust performance across 

a range of contexts. A model that fuses Convolutional Neural Networks and Vision 

Transformers within a Swin-Unet architecture, and Sentinel-1 seasonal spatio-temporal 

features, exhibits notable promise in augmenting land cover classification performance 

(Russo et al., 2025). The U-Net is a widely used deep learning architecture that is well-suited 

for segmentation tasks, including land use and land cover classification (Dabove et al., 2024) 

(Sabir et al., 2023). The U-Net’s encoder-decoder architecture with skip connections allows 

for the extraction of features at multiple scales and precise localization of objects within an 

image (Dabove et al., 2024) (Sabir et al., 2023).  

Table 1. Comparison of Deep Learning Architectures Used in Slum Detection. 

Model Core 

Architecture 

Data Input 

Type 

Reported 

Accuracy 

(%) 

Strengths Limitations 

U-Net CNN Encoder-

Decoder 

Sentinel-2, 

Landsat 

90–95 Multi-scale 

feature 

capture 

Requires large 

labeled data 

Swin-

Transformer 

Hierarchical 

Transformer 

Sentinel-1 + 

Optical 

94–98 Captures 

long-range 

dependencies 

High 

computation 

cost 

CNN + 

Contourlet 

Feature Fusion 

CNN 

VHR 

Imagery 

88–93 Texture 

enhancement 

Limited 

interpretability 

HR-RSF-UV Hybrid 

Framework 

Remote + 

Social Data 

96 Integrates 

social sensing 

Complex 

architecture 

This architecture has been successfully applied to various land use and land cover 

classification tasks and often involves the use of transfer learning to improve model 

performance, particularly in cases where the amount of available training data is limited 

(Sierra et al., 2025). For instance, in one study, a U-Net model with Monte Carlo Dropout 

was used for uncertainty quantification and achieved robust results in segmenting areas of 

dense slums and delineating their boundaries. These deep learning models, particularly 

Convolutional Neural Networks, can automatically learn hierarchical feature representations 

directly from raw imagery, which can be beneficial for capturing the complex spatial patterns 

that characterize slums. The performance of these models, however, can be significantly 

affected by regional differences in urban morphology, resulting in a lack of portability of 

models across different cities (Silva et al., 2025). This challenge highlights the importance of 
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including diverse datasets, including synthetic data, to improve the generalizability of models 

and to tailor the use of advanced analytical tools to different urban settings.  

In fact, while deep learning models, and specifically Convolutional Neural Networks, have 

been applied with some success to the problem of slum detection, there is not one single 

model architecture that is ideal for all scenarios, and efforts to address concerns regarding 

data availability and model explainability remain necessary. However, recent advances in this 

area have put emphasis on the potential of transfer learning to address the above issue by 

fine-tuning pre-trained models to new datasets and, in this way, reduce the amount of effort 

typically required to train a model from scratch (Wurm et al., 2019). This fine-tuning, in turn, 

results in significant improvements in performance and a reduced computational burden, 

especially when models are applied to complex, resource-intensive tasks such as urban slum 

mapping (Raj et al., 2024). 

 

This is of particular importance in the case of developing megacities, where the prevalence of 

rapid, unplanned, and informal urban growth creates a pressing need for scalable and accurate 

methods for slum monitoring. Moreover, the use of diverse network topologies is critical to 

account for the complex, variable, and often indistinct nature of slum areas, and a range of 

different U-Net variants and other architectures have been proposed and leveraged to great 

effect in this space. For example, a hybrid loss function that combined the cross entropy loss 

with a Dice loss has been used in recent work to improve the performance of segmentation 

tasks by focusing on spatial overlap.  

Similarly, the use of explainable AI techniques in combination with these deep learning 

models can enhance the transparency and trustworthiness of the models and provide valuable 

insights into the decision-making process, which can be used to inform and guide urban 

planners and policymakers. This level of interpretability is of particular importance in order 

to avoid ethical concerns and issues related to the use of data and to ensure that the 

integration of advanced technologies into urban planning efforts is done in a way that is 

beneficial and serves the needs of all residents. Furthermore, the development of more 

sophisticated deep learning models with unique architectures and multimodal networks that 

integrate and fuse different data sources can serve to underscore the complex nature of slum 

identification and support the refinement of urban planning strategies for the future.  

These models can analyze and interpret large volumes of satellite imagery to identify subtle 

visual cues that are indicative of informal settlements, such as irregular housing patterns, lack 

of planned infrastructure, and other characteristics, in order to facilitate and proactively 

inform urban development planning. Representation learning can greatly simplify the 

problem of population estimation in these areas by automatically extracting the relevant 

features from images and removing the need for hand-crafted feature engineering, which is 

often highly laborious and task-specific (Neal et al., 2022). Similarly, advanced deep learning 

models with a combination of U-Net architectures and multi-modal geospatial data can 

achieve high levels of accuracy in slum mapping by combining the integration of spectral, 

textural, and socioeconomic indicators (Hestrio et al., 2025). This combination of indicators 

can help to overcome the challenges of manual data collection and classification and facilitate 

a more holistic understanding of slum dynamics that goes beyond simple identification to 

predictive capabilities for future slum growth and spatial expansion. This knowledge can then 

be used to design targeted interventions and implement sustainable urban planning strategies 

that address the root causes of slum formation and improve living conditions for those 

residing in these informal settlements. Such advanced and sophisticated analytical 

frameworks can be further enhanced by the inclusion of citizen science data, which can help 
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to improve the social relevance and accuracy of such technological solutions by 

complementing machine learning output with insights from the community.  

However, it is still necessary to ensure the ethical use of AI technologies in this domain, 

which requires robust model development and interdisciplinary collaboration to support 

improved transparency and trustworthiness (Marasinghe et al., 2024). More specifically, the 

field of explainability as it relates to the task of slum mapping is of high socio-economic and 

policy relevance and will require similar interdisciplinary collaboration in order to account 

for the need for transparent decision-making processes for vulnerable urban populations.  

This is made more critical by the inherent conceptual ambiguity in the definition of a slum, 

which can vary widely both in appearance and in the varied set of indicators that are used to 

demarcate them, making the task of algorithmic training and validation much more complex 

in such a diverse geographic scope. This gap, in turn, will have to be met by the development 

of new algorithms that can adapt to different definitions and indicators of informal 

settlements. In this vein, the use of semantic segmentation alongside object detection models 

can help to further improve the identification of individual structures within informal 

settlements and provide more detailed and granular data that can be used to inform urban 

development. The inclusion of crowdsourced geographic information, for example, from 

OpenStreetMap, alongside data from Google Street View, can also provide valuable street-

level data that complements satellite imagery and can help to provide a more nuanced and 

complete picture of the characteristics of slum areas and their boundaries.  

The integration of these multiple, multi-modal data streams is key to generating high-

resolution, dynamic maps that can be used to inform targeted interventions and support the 

development of more resilient urban planning strategies (Hestrio et al., 2025). Overall, the 

use of Earth Observation methods and advanced AI provides a cost-effective way of 

acquiring extensive, gapless views of our urban areas and can play a critical role in 

addressing the urgent need for reliable, physical measures of deprivation at the community 

level (Abascal et al., 2024). 

 

Methodology 
This section of the study provides an overview of the methodological approach used to apply 

machine learning and satellite imagery for the prediction of intra-urban migration and slum 

development. This includes the data collection process, preprocessing techniques, model 

selection and validation procedures (Li et al., 2025). The approach emphasizes the 

importance of leveraging multi-source remote sensing data, along with socio-economic data, 

to capture the complex nature of urban change beyond visual patterns and make inferences 

about the underlying migration dynamics (Ibrahim et al., 2019) (Stark et al., 2024). In 

particular, the methodology section should describe the selection and comparison of deep 

learning architectures and backbones for semantic segmentation of slum areas from satellite 

imagery (Lumban-Gaol et al., 2023).  
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Figure 2. Methodological Workflow for Predicting Intra-Urban Migration and Slum 

Development. 

This should include a comparison of different models’ performance with different resolution 

satellite imagery, ranging from medium to very-high-resolution satellite imagery (Raj et al., 

2024) (Lumban-Gaol et al., 2023). This can help to determine the most effective data fusion 

techniques for improving the spatial and temporal resolution of slum mapping, capturing both 

the static morphological features and temporal changes associated with migration dynamics 

(Büttner et al., 2025). To mitigate the risk of image quality affecting the model performance, 

a data fusion approach using auxiliary metadata (e.g., sociodemographic variables, poverty 

indices, and climatic variables) can be utilized to improve the robustness of the predictive 

models and more accurately characterize vulnerability and the underlying drivers of informal 

settlement expansion (Moukheiber et al., 2024).  

The methodology should also include a validation process, using both quantitative metrics 

and qualitative assessments from urban planning experts, to ensure the generalizability and 

practical applicability of the predictive models across different urban contexts. Ultimately, 

this methodological approach should provide a comprehensive and adaptable framework for 

using machine learning and satellite imagery to provide actionable insights for proactive 

urban intervention and sustainable development in developing megacities. A recent meta-

analysis of DL-based slum mapping concluded that due to the variation in their 

characteristics, direct transfers of DLMs for slum mapping from one geographical area to 

another are not effective and may require adaptations to achieve effective and accurate 

results. The results of the meta-analysis show that the accuracy of DLMs often exceed 90% in 

most of the reviewed papers.  

However, lower recall values in most reviewed papers may indicate incomplete or under-

inclusive detection of slum areas in the study sites. This could indicate a need for refinement 

in the model architecture and training datasets to better capture the nuanced and varied 

morphological patterns of informal settlements. This could involve leveraging hybrid loss 

functions such as Dice loss and Weighted Cross-Entropy Loss, to better deal with the spatial 

intricacies and the imbalanced nature of the data in slum detection, optimizing model 

performance. A major limitation in DLMs’ potential to accurately capture the characteristics 

of slums is the need for large and diverse datasets for training. The variation in the 

morphological characteristics of slums in different geographical locations can potentially 
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undermine the models’ dependability and precision, if they are not equipped with diverse and 

localized datasets.  

Table 2. Summary of Data Sources and Variables Integrated into the Predictive Model. 

Data Source Type Variables/Indicato

rs 

Temporal 

Resolutio

n 

Spatial 

Resolutio

n 

Provider 

Sentinel-2 Optical 

Imagery 

NDVI, NDBI 10 days 10m ESA 

Landsat 8 Multispectral Land Surface Temp 16 days 30m NASA/USG

S 

Planet Labs High-Res 

Imagery 

Building Density Daily 3–5m Planet Labs 

Census Data Socioeconom

ic 

Population, 

Employment 

10 years Sub-city National 

Bureau 

OpenStreetM

ap 

GIS Roads, Water, 

Infrastructure 

Continuou

s 

Vector OSM 

 

Results 
As a result, the models’ generalizability to other geographic regions is frequently 

restricted. This was also observed in other studies where the fine-tuning of the model in the 

area of interest was required due to morphological differences of slums in different 

geographical regions (Ibrahim et al., 2019) (Moukheiber et al., 2024). In some cases, even 

built-up objects are inconsistently labelled, such as roads being either labeled as roads or not, 

depending on what the model has been trained on. For example, due to variation in slum 

features between countries and regions, which are largely shaped by cultural and 

geographical factors, models trained on datasets from one location do not necessarily perform 

well in another (Lumban-Gaol et al., 2023).  
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Figure 3. Performance Comparison of Machine Learning Models for Slum Prediction. 

In addition to generalization, the low spectral discrimination of houses in slum areas due to 

their construction materials and spectral confusion with unpaved roads could lead to spectral 

noise in the image. Furthermore, in order to separate unpaved roads from slum rooftops, 

methods based on traditional object-based image analysis were insufficient because both 

types of areas had similar spectral patterns. Instead, deep learning can be applied by fine-

tuning to identify the more subtle textural and contextual cues that are more strongly 

correlated with slum features rather than relying solely on spectral information. Therefore, 

future research must overcome this generalization challenge by incorporating deep learning 

approaches that fine-tune models for regional contexts and integrating multi-modal data 

sources like synthetic aperture radar and LiDAR to provide more discriminative feature 

representations less susceptible to spectral confusion and environmental noise.  

In addition, the incorporation of socioeconomic data and ground-truth observations could 

help to further refine the models and improve their ability to distinguish between formal and 

informal settlements and predict the likelihood of intra-urban migration (Ibrahim et al., 

2019). This could be achieved by combining data-driven modeling with expert knowledge 

and observations to better understand the underlying socio-spatial processes that drive 

informal settlement expansion and better inform policy interventions. This would allow for a 

more holistic understanding of the relationship between informal settlement and intra-urban 

migration and would be better suited for the needs of policy makers and urban planners.  

As a result, a more integrative framework that leverages both high-resolution satellite 

imagery and socio-economic indicators could improve the predictive power and policy 

relevance of the models, leading to more robust and generalizable models. This could address 

limitations in existing research, such as variability in model performance across different 

urban contexts and data quality issues. For example, integrating expert knowledge and 
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observations in the training data labeling process could help to improve model performance 

by capturing more nuanced and context-specific characteristics of informal settlements that 

automated approaches might otherwise miss. In addition, rather than using static models to 

predict formal vs. informal, researchers can develop dynamic models that also predict the 

temporal aspects of slum formation. For instance, time-series satellite imagery could be used 

to track changes in built-up area morphology and infrastructure development, which are 

indicative of informal settlement expansion and consolidation (Chen et al., 2023). This 

approach, combined with the use of interpretability tools for EO-ML methods, would also 

help to better quantify the uncertainty in the causal inferences made from these models, 

which is important for capturing the complex, multi-causal nature of urban development 

(Sakamoto et al., 2024). This improved understanding of the underlying processes driving 

urban expansion, enabled by the integration of new geospatial data sources and techniques, 

would also be critical for developing predictive frameworks that can model the 

spatiotemporal dynamics of slum formation and intra-urban migration (Mahabir et al., 2018) 

(Pettersson et al., 2023). In addition, these models could be further enhanced by incorporating 

additional data sources, such as household survey data or socioeconomic indicators, which 

could help to improve their predictive power and provide a more complete picture of the 

drivers of these processes (Kez et al., 2023).  

 
Figure 4. Confusion Matrix of Predicted vs. Actual Slum Regions Using the U-Net Model. 

 

This would allow the models to go beyond simple validation of their predictions against 

ground-based measures and instead focus on their actual application in important downstream 

tasks, such as targeting interventions or measuring policy impacts (Burke et al., 2021). It will 

help to address some of the limitations of current research, such as issues related to data 

availability and model interpretability, which have hampered the operationalization of 

satellite-based approaches in sustainable development decision-making. The adoption of 

continuous learning approaches that enable models to adapt to new patterns in the data as 

they arise would help to maintain the relevance and accuracy of the predictions over time, 
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thereby addressing the potential problem of model obsolescence. This would be particularly 

important in rapidly changing urban environments, where socio-economic and environmental 

conditions may change quickly. In addition, this approach could also be used to continuously 

update the models as new data becomes available, which could help to address issues related 

to data scarcity in certain regions or time periods (Burke et al., 2021).  

This could be accomplished by continuously monitoring built-up areas in the study region 

using satellite imagery to detect new patterns and trends and adapt the prediction models 

accordingly (Corbane et al., 2020). Furthermore, explainable AI techniques could be 

integrated into this adaptive learning framework to help to better understand and interpret the 

decision-making process of the models, thereby increasing their trustworthiness and enabling 

domain experts to validate and calibrate their outputs. This would be important for translating 

the often complex and opaque outputs of GeoAI methods into actionable information for 

urban planning and policymaking (Vitale & Lamonaca, 2025). In addition, this approach 

could also help to promote more transparent and open reporting and data sharing practices, 

which are essential for model verification and for fostering a collaborative community of 

practice around the development and application of these models. 

 
Figure 5. Predicted High-Risk Zones for Slum Formation in Lagos, Nigeria (2020–2025). 
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Discussion 
The following section explores the broader implications of these cutting-edge techniques for 

sustainable urban development. It delves into how machine learning and satellite imagery can 

be transformative tools, redefining current urban planning and resource management 

practices. The section assesses their potential to create actionable insights into urban 

dynamics, providing a foundation for data-driven decision-making and informed policy 

formulation toward sustainable development. Additionally, it contemplates the challenges 

inherent in deploying such advanced systems, such as data accessibility, computational 

resources, and the necessity for interdisciplinary collaboration among government bodies, 

academic institutions, and NGOs to develop standardized protocols for the adoption of land 

classification methods (Nigar et al., 2024). These protocols are essential for ensuring 

uniformity and comparability of Land Use and Land Cover (LULC) data across regions and 

time, thus augmenting the value of satellite-derived data for urban management (Vitale & 

Lamonaca, 2025). Moreover, the section acknowledges the integration of emerging GeoAI 

methods, particularly those providing spatially explicit interpretable model-agnostic 

explanations of deep learning models, to unearth the drivers of urban change, offering deeper 

insights into the interplay between human activities and the built environment (Sabbata et al., 

2023).  

 
Figure 6. Comparison of Grad-CAM and Integrated Gradients Visualization for Slum 

Detection. 

 

This is of particular significance for LULC classification, where deep learning models, 

especially Transformer-based models, are leading the way in performance despite issues 



 

 

 
81 

related to their computational demands and the interpretability of their complex architectures 

(Khan et al., 2024). To this end, recent progress in explainable AI, particularly model-

agnostic interpretability approaches like Captum, is emerging as a crucial ally in this 

endeavor, providing vital tools for ensuring the transparency and accountability of these 

complex models in LULC analysis. These techniques make it possible to understand how 

decisions are made in “black-box” models such as deep learning models and neural networks, 

which is crucial for their trustworthy deployment in real-world urban planning 

scenarios. This added layer of interpretability is further complemented by the implementation 

of transfer learning and fine-tuning, which optimizes transformer-based models for both 

efficiency and precision in LULC classification. These strategies not only address the 

significant computational requirements often associated with transformer models but also 

enhance their generalization capabilities, making them more adaptable to diverse 

geographical contexts and data modalities. This adaptability is key to the application of such 

models to monitor the built-up area, a task that traditional LULC classification methods have 

struggled with due to issues such as spectral variability and spatial inconsistencies (Vitale & 

Lamonaca, 2025). The application of these models therefore not only demonstrates their 

versatility but also their robustness in providing detailed analysis and change detection for 

urban planning.  

Specifically, the richer and more detailed visualizations that Captum, through Integrated 

Gradients, affords, offers a more nuanced view into the model’s “decision-making” process 

in identifying the features that it is attributing weight to in its classifications. This can be of 

major importance to LULC analysis and achieving a level of trust in the models that are 

precise and reliable enough for real-world applications. In contrast to Grad-CAM, Captum, 

specifically Integrated Gradients as a component of the Captum library, provides a more 

model-agnostic approach to explainability and can thus be applied to transformer-based 

models for LULC applications as well. This makes it possible to assess the importance of 

features in transformer-based models, while the specific comparison of the performance and 

outputs of Captum and Grad-CAM on LULC analysis, often use convolutional networks like 

DenseNet161 as the basis for comparison. This makes it possible to get an in-depth 

understanding of the subtle spatial patterns and relationships that are driving the changes in 

land use observed in these datasets and can thus give a more direct insight into the 

mechanisms driving intra-urban migration and the formation of slums.  

The advanced interpretability provided by model-agnostic explainability methods, when 

coupled with the efficiency gains from transfer learning, marks an important step towards the 

full operationalization of these advanced machine learning models for critical urban planning 

initiatives, including a deeper understanding of urban growth patterns and the dynamics that 

drive them. The selective unfreezing of specific blocks in these transformer-based models for 

fine-tuning, not only optimizes these models but does so in a way that balances performance 

with the conservation of computational resources, making them highly amenable to use in 

resource-constrained settings. This ensures that even models as complex as transformer 

models can be used effectively in environments where computational resources are at a 

premium, without compromising on the level of analysis required for truly impactful urban 

planning. This means that even datasets of higher resolution satellite imagery, which are 

more difficult to work with due to proprietary restrictions and the limited open-access nature 

of such datasets, can be handled more effectively. The integration of these explainable AI 

techniques, and in particular model-agnostic approaches like Integrated Gradients as part of 

the Captum library, plays a critical role in enhancing the transparency and trustworthiness of 

these complex deep learning models.  
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This level of transparency is not only crucial in instilling user trust and confidence in the AI-

driven insights that these models are providing, especially when they are being used to 

inform policy on sensitive and high-stakes urban development issues but also provides 

qualitative insights into how the AI is reaching its decisions. This is achieved through the use 

of attribution maps in this instance and in turn helps to identify and rectify biases in the data, 

which can help to create a more equitable and trustworthy AI system for use in LULC 

applications with major, real-world impact. This enhanced efficiency and interpretability, 

achieved through the use of techniques like unfreezing only the last few blocks of these 

transformer models for fine-tuning, means that transformer-based models are particularly 

well-suited to real-world applications in which computational resources are constrained. For 

example, the use of transfer learning and fine-tuning, through the unfreezing of only the last 

three blocks of a model like SwinT-Small or DeiT-Base for fine-tuning, was found to only 

lead to a marginal drop in accuracy, but at the cost of a nearly 27.6-min reduction in 

computation time. Fine-tuning through further unfreezing, of only the last two blocks this 

time, was seen to produce a more substantial drop in computational cost as well, with a 

smaller drop in accuracy.  

This is for the same model and thus the results can be said to be comparable but can be seen 

to also highlight the trade-offs present in terms of fine-tuning hyperparameters. This is 

exemplified by one study which found that by unfreezing the last three blocks, the model 

reached a test accuracy of 98.37% and test loss of 0.0498, while computation time for the 

entire fine-tuning process was reduced by nearly 27.6 minutes and the model parameters were 

reduced from the initial 95.96M to 6.64M, demonstrating a clear example of the kind of 

balance between model performance and efficient deployment that can be achieved through 

such techniques. This also shows the flexibility that is afforded by methods of fine-tuning 

like the unfreezing of certain blocks in a transformer model, as it allows for custom 

optimization of these models according to different application-specific constraints.  

For instance, it was also found that models like the Swin Transformer were able to 

outperform all other Vision Transformers (ViTs) on EuroSAT, a publicly available 

benchmark dataset, and be able to use it for applications like LULC classification. This can 

be of major use when it comes to the delineation of rapidly changing urban areas and thus 

provide the basis for the precise prediction of intra-urban migration and the formation of 

slums. The resulting refined ability then allows for more precise identification of subtle 

environmental changes and informal settlement patterns that are precursors to larger shifts in 

the demographic composition of urban areas, which can in turn provide the basis for 

informed urban planning interventions and policy shifts to prevent the negative impacts of 

unplanned urban expansion. The application of these approaches also allows for the inclusion 

of multi-temporal satellite data which can be of major use in the detection of changes in 

urban morphology and thus provide critical data on the temporal evolution of informal 

settlements.  

This in turn allows for the development of predictive models that can be used to not only 

forecast future urban expansion, but also strategically allocate resources to deal with the slum 

formations that are likely to emerge. The validity of such an approach is also further 

underscored by studies that have found that the fine-tuning of models like U-Net with a 

selective approach like transfer learning, can produce models with 300 times lower training 

parameters than the baseline model and accelerate the training process by a factor of 2.5, all 

while also improving accuracy metrics such as the pixel accuracy and F1 score (Neupane et 

al., 2022). This kind of increased efficiency is crucial to the development of systems that can 

be rapidly deployed in resource-constrained environments, where timeliness and accuracy of 

information are critical to effective policy formulation. The ability of these models to handle 
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and make sense of the enormous amounts of satellite imagery data, even when limited by the 

constraints of low-resource computational environments, further cements their utility for use 

in real-world urban planning scenarios, where the need for accurate and timely information is 

at a premium for informed decision-making (Raj et al., 2024). These deep learning 

techniques, especially when combined with AI applications in GIS, also open the way for 

future research directions that will involve the development of hybrid models that will 

combine the analytical capabilities of deep learning with the spatial analysis strengths of 

GIS. This will allow for the creation of comprehensive urban intelligence systems that can 

not only monitor but also predict and thus be able to inform interventions on urban migration 

patterns and the formation of slums, with a level of accuracy and timeliness that was 

previously impossible to achieve. For instance, one such model, Urban Classifier, integrated 

geometric patterns learned from satellite imagery with land use data and planning 

methodologies, to enhance the ability to understand urban functional dynamics, while another 

approach mapped slums using deep learning by combining remote and social sensing data 

and advanced neural networks (Fang et al., 2024).  

Moreover, the U-Net architecture, with its powerful features and unique design, was also 

found to be highly useful for land cover mapping and the delineation of boundaries, 

especially in the complex environment of urban informal settlements. Its encoder-decoder 

design was also found to allow for the robust capture of multi-scale contextual information, 

which is key when it comes to differentiating between different types of urban infrastructure 

and informal settlements. The ability of these robust models then allows for the identification 

of subtle structural variations and land-use patterns that are telltale signs of the areas that are 

beginning to develop into slums, thus providing the critical intelligence needed to develop 

targeted urban development initiatives. In addition, deep learning models, and CNNs in 

particular, are known to be able to automatically learn hierarchical feature representations 

directly from raw imagery data, which is critical for capturing the complex spatial patterns 

that are characteristic of slums. This in-built ability allows for the robust detection and 

mapping of informal settlements, even in contexts with high variability in building materials 

and irregular settlement structures.  

These models are also able to discern subtle changes in urban morphology, such as makeshift 

construction materials and unplanned layouts, which are key indicators of the spread of 

informal settlements. Further, the use of synthetic datasets also allows for their use to 

enhance training and ensure that the models that are being trained are robust enough to be 

able to deal with the unique and often divergent features present in slum environments when 

there is a lack of training data that is representative of the real-world data that is being 

observed. This in turn is also useful in overcoming a major limitation that is faced in many 

slum detection studies, which is the lack of labeled data, which can be especially pronounced 

in the case of slums. In addition, several CNN models were used and models that used 

transfer learning and fine-tuning, as well as U-Net-based CNN models were integrated into a 

comprehensive analytical framework, thus allowing for a high degree of adaptability and 

transferability of these models to different urban settings and data qualities. This is especially 

true as CNN architectures continue to evolve, as does the computer hardware that powers 

them, meaning that those in the fields of urban planning and urban remote sensing need to 

continually adapt their methodological approaches to best assess the ever-changing and 

complex nature of urban slums. For example, CNNs demonstrated promising accuracies 

when it came to slum mapping, and their ability to handle high volumes of data and capture 

complex spatial relationships makes them particularly well-suited to this task. The continuous 

evolution of more sophisticated CNN architectures, alongside the continuous increase in the 

computational power available to run such models also holds the promise of refining the 
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precision and granularity of such mapping further, allowing for the identification of even 

more nuanced indicators of informal settlement growth. 

 

Conclusion 
This continuous research and development effort will likely be necessary to support the 

development of models that are robust and generalizable across different settings, moving 

beyond the idiosyncrasies of localized slum characteristics and data availability or quality, to 

be applicable in a variety of global urban contexts (Silva et al., 2025). In the long term, the 

optimization of these approaches will be of benefit towards more precise urban planning 

interventions and the ability to support proactive planning to address the challenges of rapid 

urbanization and mitigate the adverse impacts of the growth and proliferation of informal 

settlements. In this respect, the current study, through its comprehensive analysis and 

insights, makes a meaningful contribution to the existing body of literature on urban 

monitoring and sustainable development. It demonstrates the efficacy of using remote sensing 

imagery and deep learning algorithms in the form of the U-Net CNN to achieve more 

accurate and efficient land cover mapping.  

In particular, the study’s findings underscore the proficiency of the U-Net architecture when 

applied alongside multi-modal remote sensing data and integrated with geospatial analytics to 

achieve an accurate identification and segmentation of urban slums (Hestrio et al., 

2025). This capability can facilitate more informed decision-making and targeted intervention 

in areas experiencing rapid growth in informal settlements, thereby contributing to 

sustainable urban planning and development initiatives. This model’s effectiveness is further 

enhanced when considering the potential for incorporating a wider range of data sources 

beyond optical imagery alone, such as Digital Surface Models to supplement two-

dimensional image data, providing three-dimensional information critical for a more nuanced 

understanding of urban morphology and structure (Dabove et al., 2024). Such an integrated 

and multi-modal data approach has the potential to further refine the capabilities of machine 

learning models in differentiating between informal settlements and formal urban fabric, even 

in areas where visual contrast may be limited or ambiguous.  

For example, incorporating the Dice loss into a hybrid loss function can help optimize model 

performance by emphasizing spatial overlap, which is particularly important for achieving 

accurate boundary delineation in the context of slum mapping. In a similar vein, the fusion of 

remote sensing data with social sensing data, as realized through hierarchical frameworks like 

HR-RSF-UV, has been shown to result in excellent performance in the characterization of 

urban villages, offering important implications for advancing recognition methodologies and 

supporting informed decision-making in urban renewal processes (Chen et al., 2021). This is 

particularly salient, highlighting the need to not only simply augment datasets, but to view 

data fusion as an essential component of the modeling process for developing and optimizing 

for robust and generalizable models (Dabove et al., 2024). The synergistic incorporation of 

diverse data modalities, such as nighttime lights and infrastructure proximity, with state-of-

the-art deep learning models in the form of the U-Net CNN is key in achieving higher 

accuracy and reliability for automated slum mapping processes (Hestrio et al., 2025). This 

also allows for a more granular and up-to-date mapping of informal settlements, which is of 

particular importance for achieving the United Nations Sustainable Development Goal 11.1 

of ensuring access for all to adequate, safe, and affordable housing by 2030 (Lu et al., 2024).  

Sophisticated deep learning approaches, including fully convolutional networks, have also 

been shown to be particularly effective at discriminating informal settlements from other 

land-use classes, demonstrating superior performance to traditional state-of-the-art deep 

learning architectures (Persello & Stein, 2017). By leveraging mechanisms like transfer 
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learning and more advanced feature extraction strategies, these models are also key to 

overcoming many of the challenges posed by the rapid evolution and diverse characteristics 

of urban informal settlements (Fan et al., 2022) (Raj et al., 2024). In this respect, the 

inclusion of both spatial and temporal data components can be seen as the next important step 

to take in the continuous refinement and optimization of these models. This offers the 

possibility of not only accurately mapping the boundaries of informal settlements in urban 

areas, but also of developing models that are more predictive in nature, capable of forecasting 

intra-urban migration patterns and the associated expansion or emergence of slum areas. This 

continuous refinement process is of particular importance for developing more accurate and 

reliable early warning systems that can support more proactive urban planning and policy 

interventions that are aimed at reducing the many adverse socio-economic impacts and 

challenges associated with informal settlements.  

The integration of such advanced models with urban planning processes and decision-making 

frameworks has the potential to provide urban planners and policymakers with crucial 

insights into the underlying drivers of slum formation and expansion, facilitating the 

development and implementation of more targeted and effective strategies for sustainable 

urban development. The ability to more accurately predict and monitor these urban 

transformations is of paramount importance to the fostering of more resilient cities and 

improving the quality of life for urban populations. This predictive capability, coupled with 

the automation afforded by deep learning solutions, will likely be of key importance in 

reducing the manual effort and expense associated with conventional monitoring and 

intervention mechanisms, allowing for more widespread and efficient application of these 

tools. This cost and time efficiency, combined with the increasing availability of high-

resolution satellite imagery, will likely mean that such methodologies are of applicability and 

ready to be operationalized in a variety of developing megacities across the globe.  

The operationalization of such predictive frameworks can, in this way, be of key importance 

to enhancing the ability of urban authorities and policymakers to make more timely and 

informed interventions, facilitating the achievement of sustainable urban development and 

poverty reduction goals (Büttner et al., 2025). Further research will likely be necessary to 

support the exploration of newer deep learning architectures and hybrid models that can 

further enhance accuracy and adaptability to different urban contexts. Future studies should 

focus on the integration and application of transformers and graph neural networks, which 

have robust capabilities for capturing and representing complex spatial-temporal 

dependencies and contextual relationships within urban environments. This would allow 

these models to account for the highly dynamic and interdependent nature of urban growth 

and the processes of intra-urban migration and informal settlement expansion, which is often 

driven by overlooked or inadequately considered socio-economic factors. The exploration 

and integration of explainable AI techniques will also be important in providing further 

insight into the decision-making processes and reasoning of these advanced models, 

supporting the broader trust and adoption of AI-driven urban planning and management 

tools. By providing a more transparent and interpretable window into the functioning of these 

models, policymakers and urban planners can be provided with a greater understanding of the 

basis for their decisions, supporting the development of more effective and equitable urban 

development strategies. 
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