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Abstract s

The exponential growth in slums across developing megacities is one of the most pervasive
and pressing issues of the 21st century. The inability of infrastructure and services to keep
pace with rapid urban migration is increasingly becoming the norm. Traditional mechanisms
of surveying urban population, based on expensive and time-consuming censuses, or
laborious ground-sampling are not scalable or often too late for pre-emptive action. This
study proposes a scalable approach to predicting urban dynamics at sub-city scales by
marrying Machine Learning (ML) with multi-spectral satellite data to predict intra-urban
migration  patterns and  likely new  slum  development or  expansion.
Our approach utilizes high-resolution multi-temporal satellite imagery data (Sentinel-2,
Landsat) and high-resolution commercial imagery (Maxar, Planet Labs) in a two-pronged
analysis. Initially, we will conduct a computer vision-driven semantic segmentation of the
urban environment using Convolutional Neural Networks (CNNs) to identify and map
current slum areas based on a composite of visual features such as building density, roof
types, road network patterns, and lack of vegetation cover. Following this, we will engineer a
comprehensive spatiotemporal dataset, extracting a host of time-variant and invariant

features, including:
e Physical Indicators: Night-time light intensity, land surface temperature anomalies,
vegetation index (NDVI), and built-up density (NDBI).
e Accessibility Metrics: Distance to employment centers, transport infrastructure, and
existing slums.

e Socio-economic Proxies: Employment density, environmental risk factors, and land value.
The resulting dataset will train and test predictive ML models, framed as a classification
problem (predicting high-risk pixels or zones for transition to slums) and a regression
problem (estimating the rate of informal settlement densification). Ensemble methods
(Random Forest, Gradient Boosting Machines like XGBoost), and sequence models
(Recurrent Neural Networks like LSTMs) will be evaluated to capture the complex, non-
linear precursors to slum formation. Training will involve historical data from a rapidly
urbanizing city, teaching the model the signature of urban change that led to slum
developments, and then tested on temporal and spatial data that is held out.
The ultimate deliverable of this work is a dynamic, high-resolution risk map of potential sites
for future slum development. This forward-looking approach is a paradigm shift in slum and
urban risk governance from a reactive to a pre-emptive framework. The results of this study
will arm urban planners, policy makers and humanitarian organizations with an early-warning
signal to target infrastructure investment and land-use zoning before expansion occurs, and to
pre-emptively provide urban services such as water, sanitation, and housing, helping to steer
urban growth towards a more sustainable, resilient and inclusive future.
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Introduction

The accelerating trend of global urbanization observed in recent decades has been particularly
remarkable in developing countries, resulting in an unprecedented expansion of urban
areas. This expansion has often taken the form of informal settlements (Ansari et al.,
2020). Informal settlements, colloguially known as slums, are densely populated urban areas
characterized by substandard housing, insecure tenure, and lack of access to basic services
(Fallatah et al., 2022). The growth of these informal settlements is not only rapid but also
haphazard in many developing megacities, posing a formidable challenge to municipal
authorities in terms of sustainable urban planning and resource allocation (Park et al.,
2025). This study is particularly motivated by the dearth of reliable and contemporaneous
data on the spatio-temporal dynamics of informal settlements in these rapidly urbanizing
regions, a deficit that significantly impedes targeted and effective policymaking (Raj et al.,
2024).

Traditional methodologies for the ongoing monitoring of urban expansion and informal
settlement proliferation, often labor-intensive ground surveys or the periodically collected
census data, are frequently outpaced by the dynamism of urban growth. By the time this data
is compiled and processed, the ground realities are often changed, rendering such
methodologies inefficient for the fast-paced dynamics of these areas (Ansari et al.,
2020). However, the recent convergence of machine learning with remote sensing
methodologies has shown great promise in bridging this gap (Gram-Hansen et al., 2019) (Liu
et al., 2019). Machine learning-based approaches to remote sensing have the potential to be
scalable, cost-effective, and offer more frequent and up-to-date monitoring of these rapid
urban changes (Gram-Hansen et al., 2019) (Liu et al., 2019). Cutting-edge deep learning
models trained on satellite images have the potential to provide high-accuracy and quasi-real-
time maps of informal settlements, a critical capability for enabling the necessary
infrastructure development, resource allocation, and service delivery in these vulnerable
communities. Thus, the research intends to address this critical data gap by developing a
reliable prediction framework that can anticipate patterns of intra-urban migration and the
resulting emergence of informal settlements.

This framework capitalizes on the rich information embedded in multi-temporal satellite
images to capture these urban dynamics, allowing the proactive identification of areas that
may be prone to informal settlement development, as opposed to retrospective analysis. This
provides a huge improvement over the status quo, as the intense, heterogeneous, and
continuous morphological changes of informal settlements have proven challenging to map
(Ambugadu & Hosni, 2022). In addition, this study will incorporate machine learning-driven
remote sensing approaches that allow for consistent, repeatable monitoring over time. This
will be important for tracking progress in attaining Sustainable Development Goal 11.1,
which aims to ensure access to adequate housing and basic services for all and to upgrade
slums (Buttner et al., 2025). To this end, this study will focus on creating a new machine
learning framework that integrates multi-temporal satellite imagery from satellite images with
a variety of geospatial datasets to predict intra-urban migration patterns and the resulting
formation of informal settlements, with a particular focus on developing megacities. In
particular, the framework will focus on detecting the early leading indicators of expansion
and densification of these informal settlements to gain the predictive power that is key to
mitigating their negative socio-economic and environmental effects.
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Figure 1. Major Developing Megacities with Rapid Informal Settlement Growth (2000—
2025).

In addition, the framework will also be used to assess the performance of a variety of
machine learning models, including deep learning models, in detecting the subtle
spatiotemporal signals that are often the signatures of these informal settlements in
developing countries (Li et al., 2023) (Fan et al., 2022). In all, this research will be used to
gain a more nuanced understanding of these urban processes and to gain important and
actionable insights that can be used to promote more inclusive and sustainable urban
development. This study is also in line with one of this research group’s bigger goals, which
is to contribute to empowering sustainability by providing deep learning and remote sensing
solutions for urban monitoring and mapping that can be used to build more sustainable and
resilient cities (Salem & Tsurusaki, 2023). This work is, therefore, an important contribution
to achieving the Sustainable Development Goal of building sustainable and resilient cities for
the future. The discussion section offers a comprehensive summary of this study’s most
significant discoveries, encapsulating their essence and implications. It accentuates the
effectiveness of remote sensing imagery and deep learning algorithms, particularly the U-Net
convolutional neural network architecture, in the accurate categorization of land covers
within rapidly transforming urban landscapes. The use of multi-temporal data from the
BigEarthNet dataset and the incorporation of transfer learning in this approach serve to
substantially improve the accuracy and efficiency of urban monitoring and mapping
efforts. The skip connections within the U-Net design are specifically of importance in
preserving detailed spatial information while fusing in more general contextual cues,
ultimately leading to the highly accurate and finely detailed segmentation results that are
characteristic of land cover classification (Fan et al., 2022).

Literature Review

It is precisely this ability to detect both fine-grained local features as well as broader context
that underpins their success at discriminating between different urban land cover classes,
including informal settlements (Dabove et al., 2024). By enhancing feature extraction and
fusion processes, the use of contourlet transforms in conjunction with U-Net architecture can
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further exploit textural and spatial details to improve informal built-up detection (Raj et al.,
2024). These advanced deep learning architectures can be integrated with very-high spatial
resolution satellite imagery to precisely delineate land boundaries and capture complex
spatial relationships within urban landscapes, providing valuable insights into the interplay of
socioeconomic and environmental factors that drive urban development (Chen et al., 2023).
Furthermore, by automating the analysis process, these deep learning algorithms eliminate
the need for costly and time-consuming manual data processing, thereby enabling more
efficient and scalable urban monitoring efforts across large geographic areas. This scalability
is particularly crucial for characterizing the dynamic and expansive growth of developing
megacities that may lack the resources to conduct traditional, large-scale urban surveys and
that are, therefore, at a higher risk of infrastructural and service delivery failures if slums are
not adequately monitored for timely intervention. The flexibility of these models, particularly
those leveraging transfer learning approaches, further attests to their suitability for the highly
variable and evolving nature of slum environments, ensuring their robust performance across
a range of contexts. A model that fuses Convolutional Neural Networks and Vision
Transformers within a Swin-Unet architecture, and Sentinel-1 seasonal spatio-temporal
features, exhibits notable promise in augmenting land cover classification performance
(Russo et al., 2025). The U-Net is a widely used deep learning architecture that is well-suited
for segmentation tasks, including land use and land cover classification (Dabove et al., 2024)
(Sabir et al., 2023). The U-Net’s encoder-decoder architecture with skip connections allows
for the extraction of features at multiple scales and precise localization of objects within an
image (Dabove et al., 2024) (Sabir et al., 2023).

Table 1. Comparison of Deep Learning Architectures Used in Slum Detection.

Model Core Data Input | Reported | Strengths Limitations
Architecture | Type Accuracy
(%)
U-Net CNN Encoder- | Sentinel-2, | 90-95 Multi-scale Requires large
Decoder Landsat feature labeled data
capture
Swin- Hierarchical Sentinel-1 + | 94-98 Captures High
Transformer | Transformer Optical long-range computation
dependencies | cost
CNN + | Feature Fusion | VHR 88-93 Texture Limited
Contourlet | CNN Imagery enhancement | interpretability
HR-RSF-UV | Hybrid Remote + | 96 Integrates Complex
Framework Social Data social sensing | architecture

This architecture has been successfully applied to various land use and land cover
classification tasks and often involves the use of transfer learning to improve model
performance, particularly in cases where the amount of available training data is limited
(Sierra et al., 2025). For instance, in one study, a U-Net model with Monte Carlo Dropout
was used for uncertainty quantification and achieved robust results in segmenting areas of
dense slums and delineating their boundaries. These deep learning models, particularly
Convolutional Neural Networks, can automatically learn hierarchical feature representations
directly from raw imagery, which can be beneficial for capturing the complex spatial patterns
that characterize slums. The performance of these models, however, can be significantly
affected by regional differences in urban morphology, resulting in a lack of portability of
models across different cities (Silva et al., 2025). This challenge highlights the importance of
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including diverse datasets, including synthetic data, to improve the generalizability of models
and to tailor the use of advanced analytical tools to different urban settings.

In fact, while deep learning models, and specifically Convolutional Neural Networks, have
been applied with some success to the problem of slum detection, there is not one single
model architecture that is ideal for all scenarios, and efforts to address concerns regarding
data availability and model explainability remain necessary. However, recent advances in this
area have put emphasis on the potential of transfer learning to address the above issue by
fine-tuning pre-trained models to new datasets and, in this way, reduce the amount of effort
typically required to train a model from scratch (Wurm et al., 2019). This fine-tuning, in turn,
results in significant improvements in performance and a reduced computational burden,
especially when models are applied to complex, resource-intensive tasks such as urban slum
mapping (Raj et al., 2024).

This is of particular importance in the case of developing megacities, where the prevalence of
rapid, unplanned, and informal urban growth creates a pressing need for scalable and accurate
methods for slum monitoring. Moreover, the use of diverse network topologies is critical to
account for the complex, variable, and often indistinct nature of slum areas, and a range of
different U-Net variants and other architectures have been proposed and leveraged to great
effect in this space. For example, a hybrid loss function that combined the cross entropy loss
with a Dice loss has been used in recent work to improve the performance of segmentation
tasks by focusing on spatial overlap.

Similarly, the use of explainable Al techniques in combination with these deep learning
models can enhance the transparency and trustworthiness of the models and provide valuable
insights into the decision-making process, which can be used to inform and guide urban
planners and policymakers. This level of interpretability is of particular importance in order
to avoid ethical concerns and issues related to the use of data and to ensure that the
integration of advanced technologies into urban planning efforts is done in a way that is
beneficial and serves the needs of all residents. Furthermore, the development of more
sophisticated deep learning models with unique architectures and multimodal networks that
integrate and fuse different data sources can serve to underscore the complex nature of slum
identification and support the refinement of urban planning strategies for the future.

These models can analyze and interpret large volumes of satellite imagery to identify subtle
visual cues that are indicative of informal settlements, such as irregular housing patterns, lack
of planned infrastructure, and other characteristics, in order to facilitate and proactively
inform urban development planning. Representation learning can greatly simplify the
problem of population estimation in these areas by automatically extracting the relevant
features from images and removing the need for hand-crafted feature engineering, which is
often highly laborious and task-specific (Neal et al., 2022). Similarly, advanced deep learning
models with a combination of U-Net architectures and multi-modal geospatial data can
achieve high levels of accuracy in slum mapping by combining the integration of spectral,
textural, and socioeconomic indicators (Hestrio et al., 2025). This combination of indicators
can help to overcome the challenges of manual data collection and classification and facilitate
a more holistic understanding of slum dynamics that goes beyond simple identification to
predictive capabilities for future slum growth and spatial expansion. This knowledge can then
be used to design targeted interventions and implement sustainable urban planning strategies
that address the root causes of slum formation and improve living conditions for those
residing in these informal settlements. Such advanced and sophisticated analytical
frameworks can be further enhanced by the inclusion of citizen science data, which can help
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to improve the social relevance and accuracy of such technological solutions by
complementing machine learning output with insights from the community.

However, it is still necessary to ensure the ethical use of Al technologies in this domain,
which requires robust model development and interdisciplinary collaboration to support
improved transparency and trustworthiness (Marasinghe et al., 2024). More specifically, the
field of explainability as it relates to the task of slum mapping is of high socio-economic and
policy relevance and will require similar interdisciplinary collaboration in order to account
for the need for transparent decision-making processes for vulnerable urban populations.

This is made more critical by the inherent conceptual ambiguity in the definition of a slum,
which can vary widely both in appearance and in the varied set of indicators that are used to
demarcate them, making the task of algorithmic training and validation much more complex
in such a diverse geographic scope. This gap, in turn, will have to be met by the development
of new algorithms that can adapt to different definitions and indicators of informal
settlements. In this vein, the use of semantic segmentation alongside object detection models
can help to further improve the identification of individual structures within informal
settlements and provide more detailed and granular data that can be used to inform urban
development. The inclusion of crowdsourced geographic information, for example, from
OpenStreetMap, alongside data from Google Street View, can also provide valuable street-
level data that complements satellite imagery and can help to provide a more nuanced and
complete picture of the characteristics of slum areas and their boundaries.

The integration of these multiple, multi-modal data streams is key to generating high-
resolution, dynamic maps that can be used to inform targeted interventions and support the
development of more resilient urban planning strategies (Hestrio et al., 2025). Overall, the
use of Earth Observation methods and advanced Al provides a cost-effective way of
acquiring extensive, gapless views of our urban areas and can play a critical role in
addressing the urgent need for reliable, physical measures of deprivation at the community
level (Abascal et al., 2024).

Methodology

This section of the study provides an overview of the methodological approach used to apply
machine learning and satellite imagery for the prediction of intra-urban migration and slum
development. This includes the data collection process, preprocessing techniques, model
selection and validation procedures (Li et al., 2025). The approach emphasizes the
importance of leveraging multi-source remote sensing data, along with socio-economic data,
to capture the complex nature of urban change beyond visual patterns and make inferences
about the underlying migration dynamics (lbrahim et al., 2019) (Stark et al., 2024). In
particular, the methodology section should describe the selection and comparison of deep
learning architectures and backbones for semantic segmentation of slum areas from satellite
imagery (Lumban-Gaol et al., 2023).
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Figure 2. Methodological Workflow for Predicting Intra-Urban Migration and Slum
Development.

This should include a comparison of different models’ performance with different resolution
satellite imagery, ranging from medium to very-high-resolution satellite imagery (Raj et al.,
2024) (Lumban-Gaol et al., 2023). This can help to determine the most effective data fusion
techniques for improving the spatial and temporal resolution of slum mapping, capturing both
the static morphological features and temporal changes associated with migration dynamics
(Buttner et al., 2025). To mitigate the risk of image quality affecting the model performance,
a data fusion approach using auxiliary metadata (e.g., sociodemographic variables, poverty
indices, and climatic variables) can be utilized to improve the robustness of the predictive
models and more accurately characterize vulnerability and the underlying drivers of informal
settlement expansion (Moukheiber et al., 2024).

The methodology should also include a validation process, using both guantitative metrics
and qualitative assessments from urban planning experts, to ensure the generalizability and
practical applicability of the predictive models across different urban contexts. Ultimately,
this methodological approach should provide a comprehensive and adaptable framework for
using machine learning and satellite imagery to provide actionable insights for proactive
urban intervention and sustainable development in developing megacities. A recent meta-
analysis of DL-based slum mapping concluded that due to the variation in their
characteristics, direct transfers of DLMs for slum mapping from one geographical area to
another are not effective and may require adaptations to achieve effective and accurate
results. The results of the meta-analysis show that the accuracy of DLMs often exceed 90% in
most of the reviewed papers.

However, lower recall values in most reviewed papers may indicate incomplete or under-
inclusive detection of slum areas in the study sites. This could indicate a need for refinement
in the model architecture and training datasets to better capture the nuanced and varied
morphological patterns of informal settlements. This could involve leveraging hybrid loss
functions such as Dice loss and Weighted Cross-Entropy Loss, to better deal with the spatial
intricacies and the imbalanced nature of the data in slum detection, optimizing model
performance. A major limitation in DLMs’ potential to accurately capture the characteristics
of slums is the need for large and diverse datasets for training. The variation in the
morphological characteristics of slums in different geographical locations can potentially
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undermine the models’ dependability and precision, if they are not equipped with diverse and
localized datasets.
Table 2. Summary of Data Sources and Variables Integrated into the Predictive Model.

Data Source | Type Variables/Indicato | Temporal | Spatial Provider
rs Resolutio | Resolutio
n n
Sentinel-2 Optical NDVI, NDBI 10 days 10m ESA
Imagery
Landsat 8 Multispectral | Land Surface Temp | 16 days 30m NASA/USG
S
Planet Labs High-Res Building Density Daily 3-5m Planet Labs
Imagery
Census Data | Socioeconom | Population, 10 years | Sub-city | National
ic Employment Bureau
OpenStreetM | GIS Roads, Water, | Continuou | Vector OSM
ap Infrastructure S
Results

As a result, the models’ generalizability to other geographic regions is frequently
restricted. This was also observed in other studies where the fine-tuning of the model in the
area of interest was required due to morphological differences of slums in different
geographical regions (lbrahim et al., 2019) (Moukheiber et al., 2024). In some cases, even
built-up objects are inconsistently labelled, such as roads being either labeled as roads or not,
depending on what the model has been trained on. For example, due to variation in slum
features between countries and regions, which are largely shaped by cultural and
geographical factors, models trained on datasets from one location do not necessarily perform
well in another (Lumban-Gaol et al., 2023).
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Figure 3. Performance Comparison of Machine Learning Models for Slum Prediction.

In addition to generalization, the low spectral discrimination of houses in slum areas due to
their construction materials and spectral confusion with unpaved roads could lead to spectral
noise in the image. Furthermore, in order to separate unpaved roads from slum rooftops,
methods based on traditional object-based image analysis were insufficient because both
types of areas had similar spectral patterns. Instead, deep learning can be applied by fine-
tuning to identify the more subtle textural and contextual cues that are more strongly
correlated with slum features rather than relying solely on spectral information. Therefore,
future research must overcome this generalization challenge by incorporating deep learning
approaches that fine-tune models for regional contexts and integrating multi-modal data
sources like synthetic aperture radar and LIiDAR to provide more discriminative feature
representations less susceptible to spectral confusion and environmental noise.

In addition, the incorporation of socioeconomic data and ground-truth observations could
help to further refine the models and improve their ability to distinguish between formal and
informal settlements and predict the likelihood of intra-urban migration (lbrahim et al.,
2019). This could be achieved by combining data-driven modeling with expert knowledge
and observations to better understand the underlying socio-spatial processes that drive
informal settlement expansion and better inform policy interventions. This would allow for a
more holistic understanding of the relationship between informal settlement and intra-urban
migration and would be better suited for the needs of policy makers and urban planners.

As a result, a more integrative framework that leverages both high-resolution satellite
imagery and socio-economic indicators could improve the predictive power and policy
relevance of the models, leading to more robust and generalizable models. This could address
limitations in existing research, such as variability in model performance across different
urban contexts and data quality issues. For example, integrating expert knowledge and
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observations in the training data labeling process could help to improve model performance
by capturing more nuanced and context-specific characteristics of informal settlements that
automated approaches might otherwise miss. In addition, rather than using static models to
predict formal vs. informal, researchers can develop dynamic models that also predict the
temporal aspects of slum formation. For instance, time-series satellite imagery could be used
to track changes in built-up area morphology and infrastructure development, which are
indicative of informal settlement expansion and consolidation (Chen et al., 2023). This
approach, combined with the use of interpretability tools for EO-ML methods, would also
help to better quantify the uncertainty in the causal inferences made from these models,
which is important for capturing the complex, multi-causal nature of urban development
(Sakamoto et al., 2024). This improved understanding of the underlying processes driving
urban expansion, enabled by the integration of new geospatial data sources and techniques,
would also be critical for developing predictive frameworks that can model the
spatiotemporal dynamics of slum formation and intra-urban migration (Mahabir et al., 2018)
(Pettersson et al., 2023). In addition, these models could be further enhanced by incorporating
additional data sources, such as household survey data or socioeconomic indicators, which
could help to improve their predictive power and provide a more complete picture of the
drivers of these processes (Kez et al., 2023).

Slum Non-Slum

Slum

-
(0 0]

Predicted Class

Predicted Class
Figure 4. Confusion Matrix of Predicted vs. Actual Slum Regions Using the U-Net Model.

This would allow the models to go beyond simple validation of their predictions against
ground-based measures and instead focus on their actual application in important downstream
tasks, such as targeting interventions or measuring policy impacts (Burke et al., 2021). It will
help to address some of the limitations of current research, such as issues related to data
availability and model interpretability, which have hampered the operationalization of
satellite-based approaches in sustainable development decision-making. The adoption of
continuous learning approaches that enable models to adapt to new patterns in the data as
they arise would help to maintain the relevance and accuracy of the predictions over time,
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thereby addressing the potential problem of model obsolescence. This would be particularly
important in rapidly changing urban environments, where socio-economic and environmental
conditions may change quickly. In addition, this approach could also be used to continuously
update the models as new data becomes available, which could help to address issues related
to data scarcity in certain regions or time periods (Burke et al., 2021).

This could be accomplished by continuously monitoring built-up areas in the study region
using satellite imagery to detect new patterns and trends and adapt the prediction models
accordingly (Corbane et al., 2020). Furthermore, explainable Al techniques could be
integrated into this adaptive learning framework to help to better understand and interpret the
decision-making process of the models, thereby increasing their trustworthiness and enabling
domain experts to validate and calibrate their outputs. This would be important for translating
the often complex and opaque outputs of GeoAl methods into actionable information for
urban planning and policymaking (Vitale & Lamonaca, 2025). In addition, this approach
could also help to promote more transparent and open reporting and data sharing practices,
which are essential for model verification and for fostering a collaborative community of
practice around the development and application of these models.
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Figure 5. Predicted High-Risk Zones for Slum Formation in Lagos, Nigeria (2020—2025).
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Discussion

The following section explores the broader implications of these cutting-edge techniques for
sustainable urban development. It delves into how machine learning and satellite imagery can
be transformative tools, redefining current urban planning and resource management
practices. The section assesses their potential to create actionable insights into urban
dynamics, providing a foundation for data-driven decision-making and informed policy
formulation toward sustainable development. Additionally, it contemplates the challenges
inherent in deploying such advanced systems, such as data accessibility, computational
resources, and the necessity for interdisciplinary collaboration among government bodies,
academic institutions, and NGOs to develop standardized protocols for the adoption of land
classification methods (Nigar et al., 2024). These protocols are essential for ensuring
uniformity and comparability of Land Use and Land Cover (LULC) data across regions and
time, thus augmenting the value of satellite-derived data for urban management (Vitale &
Lamonaca, 2025). Moreover, the section acknowledges the integration of emerging GeoAl
methods, particularly those providing spatially explicit interpretable model-agnostic
explanations of deep learning models, to unearth the drivers of urban change, offering deeper
insights into the interplay between human activities and the built environment (Sabbata et al.,
2023).

Captum

Grad-CAM Integrated Gradients

low high

Figure 6. Comparison of Grad-CAM and Integrated Gradients Visualization for Slum
Detection.

This is of particular significance for LULC classification, where deep learning models,
especially Transformer-based models, are leading the way in performance despite issues
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related to their computational demands and the interpretability of their complex architectures
(Khan et al., 2024). To this end, recent progress in explainable Al, particularly model-
agnostic interpretability approaches like Captum, is emerging as a crucial ally in this
endeavor, providing vital tools for ensuring the transparency and accountability of these
complex models in LULC analysis. These techniques make it possible to understand how
decisions are made in “black-box” models such as deep learning models and neural networks,
which is crucial for their trustworthy deployment in real-world urban planning
scenarios. This added layer of interpretability is further complemented by the implementation
of transfer learning and fine-tuning, which optimizes transformer-based models for both
efficiency and precision in LULC classification. These strategies not only address the
significant computational requirements often associated with transformer models but also
enhance their generalization capabilities, making them more adaptable to diverse
geographical contexts and data modalities. This adaptability is key to the application of such
models to monitor the built-up area, a task that traditional LULC classification methods have
struggled with due to issues such as spectral variability and spatial inconsistencies (Vitale &
Lamonaca, 2025). The application of these models therefore not only demonstrates their
versatility but also their robustness in providing detailed analysis and change detection for
urban planning.

Specifically, the richer and more detailed visualizations that Captum, through Integrated
Gradients, affords, offers a more nuanced view into the model’s “decision-making” process
in identifying the features that it is attributing weight to in its classifications. This can be of
major importance to LULC analysis and achieving a level of trust in the models that are
precise and reliable enough for real-world applications. In contrast to Grad-CAM, Captum,
specifically Integrated Gradients as a component of the Captum library, provides a more
model-agnostic approach to explainability and can thus be applied to transformer-based
models for LULC applications as well. This makes it possible to assess the importance of
features in transformer-based models, while the specific comparison of the performance and
outputs of Captum and Grad-CAM on LULC analysis, often use convolutional networks like
DenseNetl61 as the basis for comparison. This makes it possible to get an in-depth
understanding of the subtle spatial patterns and relationships that are driving the changes in
land use observed in these datasets and can thus give a more direct insight into the
mechanisms driving intra-urban migration and the formation of slums.

The advanced interpretability provided by model-agnostic explainability methods, when
coupled with the efficiency gains from transfer learning, marks an important step towards the
full operationalization of these advanced machine learning models for critical urban planning
initiatives, including a deeper understanding of urban growth patterns and the dynamics that
drive them. The selective unfreezing of specific blocks in these transformer-based models for
fine-tuning, not only optimizes these models but does so in a way that balances performance
with the conservation of computational resources, making them highly amenable to use in
resource-constrained settings. This ensures that even models as complex as transformer
models can be used effectively in environments where computational resources are at a
premium, without compromising on the level of analysis required for truly impactful urban
planning. This means that even datasets of higher resolution satellite imagery, which are
more difficult to work with due to proprietary restrictions and the limited open-access nature
of such datasets, can be handled more effectively. The integration of these explainable Al
techniques, and in particular model-agnostic approaches like Integrated Gradients as part of
the Captum library, plays a critical role in enhancing the transparency and trustworthiness of
these complex deep learning models.
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This level of transparency is not only crucial in instilling user trust and confidence in the Al-
driven insights that these models are providing, especially when they are being used to
inform policy on sensitive and high-stakes urban development issues but also provides
qualitative insights into how the Al is reaching its decisions. This is achieved through the use
of attribution maps in this instance and in turn helps to identify and rectify biases in the data,
which can help to create a more equitable and trustworthy Al system for use in LULC
applications with major, real-world impact. This enhanced efficiency and interpretability,
achieved through the use of techniques like unfreezing only the last few blocks of these
transformer models for fine-tuning, means that transformer-based models are particularly
well-suited to real-world applications in which computational resources are constrained. For
example, the use of transfer learning and fine-tuning, through the unfreezing of only the last
three blocks of a model like SwinT-Small or DeiT-Base for fine-tuning, was found to only
lead to a marginal drop in accuracy, but at the cost of a nearly 27.6-min reduction in
computation time. Fine-tuning through further unfreezing, of only the last two blocks this
time, was seen to produce a more substantial drop in computational cost as well, with a
smaller drop in accuracy.

This is for the same model and thus the results can be said to be comparable but can be seen
to also highlight the trade-offs present in terms of fine-tuning hyperparameters. This is
exemplified by one study which found that by unfreezing the last three blocks, the model
reached a test accuracy of 98.37% and test loss of 0.0498, while computation time for the
entire fine-tuning process was reduced by nearly 27.6 minutes and the model parameters were
reduced from the initial 95.96M to 6.64M, demonstrating a clear example of the kind of
balance between model performance and efficient deployment that can be achieved through
such techniques. This also shows the flexibility that is afforded by methods of fine-tuning
like the unfreezing of certain blocks in a transformer model, as it allows for custom
optimization of these models according to different application-specific constraints.

For instance, it was also found that models like the Swin Transformer were able to
outperform all other Vision Transformers (ViTs) on EuroSAT, a publicly available
benchmark dataset, and be able to use it for applications like LULC classification. This can
be of major use when it comes to the delineation of rapidly changing urban areas and thus
provide the basis for the precise prediction of intra-urban migration and the formation of
slums. The resulting refined ability then allows for more precise identification of subtle
environmental changes and informal settlement patterns that are precursors to larger shifts in
the demographic composition of urban areas, which can in turn provide the basis for
informed urban planning interventions and policy shifts to prevent the negative impacts of
unplanned urban expansion. The application of these approaches also allows for the inclusion
of multi-temporal satellite data which can be of major use in the detection of changes in
urban morphology and thus provide critical data on the temporal evolution of informal
settlements.

This in turn allows for the development of predictive models that can be used to not only
forecast future urban expansion, but also strategically allocate resources to deal with the slum
formations that are likely to emerge. The validity of such an approach is also further
underscored by studies that have found that the fine-tuning of models like U-Net with a
selective approach like transfer learning, can produce models with 300 times lower training
parameters than the baseline model and accelerate the training process by a factor of 2.5, all
while also improving accuracy metrics such as the pixel accuracy and F1 score (Neupane et
al., 2022). This kind of increased efficiency is crucial to the development of systems that can
be rapidly deployed in resource-constrained environments, where timeliness and accuracy of
information are critical to effective policy formulation. The ability of these models to handle
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and make sense of the enormous amounts of satellite imagery data, even when limited by the
constraints of low-resource computational environments, further cements their utility for use
in real-world urban planning scenarios, where the need for accurate and timely information is
at a premium for informed decision-making (Raj et al., 2024). These deep learning
techniques, especially when combined with Al applications in GIS, also open the way for
future research directions that will involve the development of hybrid models that will
combine the analytical capabilities of deep learning with the spatial analysis strengths of
GIS. This will allow for the creation of comprehensive urban intelligence systems that can
not only monitor but also predict and thus be able to inform interventions on urban migration
patterns and the formation of slums, with a level of accuracy and timeliness that was
previously impossible to achieve. For instance, one such model, Urban Classifier, integrated
geometric patterns learned from satellite imagery with land use data and planning
methodologies, to enhance the ability to understand urban functional dynamics, while another
approach mapped slums using deep learning by combining remote and social sensing data
and advanced neural networks (Fang et al., 2024).

Moreover, the U-Net architecture, with its powerful features and unique design, was also
found to be highly useful for land cover mapping and the delineation of boundaries,
especially in the complex environment of urban informal settlements. Its encoder-decoder
design was also found to allow for the robust capture of multi-scale contextual information,
which is key when it comes to differentiating between different types of urban infrastructure
and informal settlements. The ability of these robust models then allows for the identification
of subtle structural variations and land-use patterns that are telltale signs of the areas that are
beginning to develop into slums, thus providing the critical intelligence needed to develop
targeted urban development initiatives. In addition, deep learning models, and CNNs in
particular, are known to be able to automatically learn hierarchical feature representations
directly from raw imagery data, which is critical for capturing the complex spatial patterns
that are characteristic of slums. This in-built ability allows for the robust detection and
mapping of informal settlements, even in contexts with high variability in building materials
and irregular settlement structures.

These models are also able to discern subtle changes in urban morphology, such as makeshift
construction materials and unplanned layouts, which are key indicators of the spread of
informal settlements. Further, the use of synthetic datasets also allows for their use to
enhance training and ensure that the models that are being trained are robust enough to be
able to deal with the unique and often divergent features present in slum environments when
there is a lack of training data that is representative of the real-world data that is being
observed. This in turn is also useful in overcoming a major limitation that is faced in many
slum detection studies, which is the lack of labeled data, which can be especially pronounced
in the case of slums. In addition, several CNN models were used and models that used
transfer learning and fine-tuning, as well as U-Net-based CNN models were integrated into a
comprehensive analytical framework, thus allowing for a high degree of adaptability and
transferability of these models to different urban settings and data qualities. This is especially
true as CNN architectures continue to evolve, as does the computer hardware that powers
them, meaning that those in the fields of urban planning and urban remote sensing need to
continually adapt their methodological approaches to best assess the ever-changing and
complex nature of urban slums. For example, CNNs demonstrated promising accuracies
when it came to slum mapping, and their ability to handle high volumes of data and capture
complex spatial relationships makes them particularly well-suited to this task. The continuous
evolution of more sophisticated CNN architectures, alongside the continuous increase in the
computational power available to run such models also holds the promise of refining the
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precision and granularity of such mapping further, allowing for the identification of even
more nuanced indicators of informal settlement growth.

Conclusion

This continuous research and development effort will likely be necessary to support the
development of models that are robust and generalizable across different settings, moving
beyond the idiosyncrasies of localized slum characteristics and data availability or quality, to
be applicable in a variety of global urban contexts (Silva et al., 2025). In the long term, the
optimization of these approaches will be of benefit towards more precise urban planning
interventions and the ability to support proactive planning to address the challenges of rapid
urbanization and mitigate the adverse impacts of the growth and proliferation of informal
settlements. In this respect, the current study, through its comprehensive analysis and
insights, makes a meaningful contribution to the existing body of literature on urban
monitoring and sustainable development. It demonstrates the efficacy of using remote sensing
imagery and deep learning algorithms in the form of the U-Net CNN to achieve more
accurate and efficient land cover mapping.

In particular, the study’s findings underscore the proficiency of the U-Net architecture when
applied alongside multi-modal remote sensing data and integrated with geospatial analytics to
achieve an accurate identification and segmentation of urban slums (Hestrio et al.,
2025). This capability can facilitate more informed decision-making and targeted intervention
in areas experiencing rapid growth in informal settlements, thereby contributing to
sustainable urban planning and development initiatives. This model’s effectiveness is further
enhanced when considering the potential for incorporating a wider range of data sources
beyond optical imagery alone, such as Digital Surface Models to supplement two-
dimensional image data, providing three-dimensional information critical for a more nuanced
understanding of urban morphology and structure (Dabove et al., 2024). Such an integrated
and multi-modal data approach has the potential to further refine the capabilities of machine
learning models in differentiating between informal settlements and formal urban fabric, even
in areas where visual contrast may be limited or ambiguous.

For example, incorporating the Dice loss into a hybrid loss function can help optimize model
performance by emphasizing spatial overlap, which is particularly important for achieving
accurate boundary delineation in the context of slum mapping. In a similar vein, the fusion of
remote sensing data with social sensing data, as realized through hierarchical frameworks like
HR-RSF-UV, has been shown to result in excellent performance in the characterization of
urban villages, offering important implications for advancing recognition methodologies and
supporting informed decision-making in urban renewal processes (Chen et al., 2021). This is
particularly salient, highlighting the need to not only simply augment datasets, but to view
data fusion as an essential component of the modeling process for developing and optimizing
for robust and generalizable models (Dabove et al., 2024). The synergistic incorporation of
diverse data modalities, such as nighttime lights and infrastructure proximity, with state-of-
the-art deep learning models in the form of the U-Net CNN is key in achieving higher
accuracy and reliability for automated slum mapping processes (Hestrio et al., 2025). This
also allows for a more granular and up-to-date mapping of informal settlements, which is of
particular importance for achieving the United Nations Sustainable Development Goal 11.1
of ensuring access for all to adequate, safe, and affordable housing by 2030 (Lu et al., 2024).
Sophisticated deep learning approaches, including fully convolutional networks, have also
been shown to be particularly effective at discriminating informal settlements from other
land-use classes, demonstrating superior performance to traditional state-of-the-art deep
learning architectures (Persello & Stein, 2017). By leveraging mechanisms like transfer
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learning and more advanced feature extraction strategies, these models are also key to
overcoming many of the challenges posed by the rapid evolution and diverse characteristics
of urban informal settlements (Fan et al., 2022) (Raj et al., 2024). In this respect, the
inclusion of both spatial and temporal data components can be seen as the next important step
to take in the continuous refinement and optimization of these models. This offers the
possibility of not only accurately mapping the boundaries of informal settlements in urban
areas, but also of developing models that are more predictive in nature, capable of forecasting
intra-urban migration patterns and the associated expansion or emergence of slum areas. This
continuous refinement process is of particular importance for developing more accurate and
reliable early warning systems that can support more proactive urban planning and policy
interventions that are aimed at reducing the many adverse socio-economic impacts and
challenges associated with informal settlements.

The integration of such advanced models with urban planning processes and decision-making
frameworks has the potential to provide urban planners and policymakers with crucial
insights into the underlying drivers of slum formation and expansion, facilitating the
development and implementation of more targeted and effective strategies for sustainable
urban development. The ability to more accurately predict and monitor these urban
transformations is of paramount importance to the fostering of more resilient cities and
improving the quality of life for urban populations. This predictive capability, coupled with
the automation afforded by deep learning solutions, will likely be of key importance in
reducing the manual effort and expense associated with conventional monitoring and
intervention mechanisms, allowing for more widespread and efficient application of these
tools. This cost and time efficiency, combined with the increasing availability of high-
resolution satellite imagery, will likely mean that such methodologies are of applicability and
ready to be operationalized in a variety of developing megacities across the globe.

The operationalization of such predictive frameworks can, in this way, be of key importance
to enhancing the ability of urban authorities and policymakers to make more timely and
informed interventions, facilitating the achievement of sustainable urban development and
poverty reduction goals (Buttner et al., 2025). Further research will likely be necessary to
support the exploration of newer deep learning architectures and hybrid models that can
further enhance accuracy and adaptability to different urban contexts. Future studies should
focus on the integration and application of transformers and graph neural networks, which
have robust capabilities for capturing and representing complex spatial-temporal
dependencies and contextual relationships within urban environments. This would allow
these models to account for the highly dynamic and interdependent nature of urban growth
and the processes of intra-urban migration and informal settlement expansion, which is often
driven by overlooked or inadequately considered socio-economic factors. The exploration
and integration of explainable Al techniques will also be important in providing further
insight into the decision-making processes and reasoning of these advanced models,
supporting the broader trust and adoption of Al-driven urban planning and management
tools. By providing a more transparent and interpretable window into the functioning of these
models, policymakers and urban planners can be provided with a greater understanding of the
basis for their decisions, supporting the development of more effective and equitable urban
development strategies.
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