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Abstract

Accurate and up-to-date information on where people are and in what numbers is essential for
disaster management and the fair distribution of public goods and services. However, official
population counts are typically only available from censuses, which are often outdated and
lack temporal and spatial resolution. Here we develop and validate a scalable approach that
combines anonymized, aggregated mobile phone data (call detail records and passive network
events) and census baselines to produce up-to-date, error-quantified population estimates at
sub-district spatial resolutions and hourly to daily temporal frequencies. We normalize
mobile activity to resident population with a Bayesian hierarchical model that accounts for
carrier market share, multi-SIM ownership, inactive devices, and diurnal/weekly seasonality
effects. We allocate the normalized activity across space with dasymetric mapping using
ancillary layers (land use, building footprints, night-time lights, road networks) to restrict to
likely inhabited areas and disentangle through-mobility from residential population. A state-
space data assimilation framework fuses multiple activity signals (tower handovers, app
pings, emergency alert traffic) to provide near—real-time population updates in the presence
of hazard-induced mobility changes.
We assess performance against ground truth from household surveys, administrative
registries, smart-meter rollups, and post-event field counts, reporting accuracy as mean
absolute percentage error, coverage probabilities for credible intervals, and resilience to
simulated network outages. We illustrate applications for storm evacuation and flood
response, showing how the estimates can inform the pre-positioning of supplies, dynamic
routing of ambulances, siting of mobile clinics and shelters, and prioritization of damage
assessment teams. The framework incorporates privacy-by-design measures (k-anonymity
thresholds, differential privacy noise, strict governance and retention policies) and generates
confidence surfaces to enable risk-aware decision-making.
Our method effectively transforms static census baselines into living population surfaces,
helping responders and planners see where people are—and how they move—~before, during,
and after a disaster. Beyond the emergency context, the approach can support the routine
distribution of health, education, and transportation resources, offering a practical, ethically
sound pathway to data-driven public service delivery in rapidly urbanizing and peri-urban
environments. This integrated methodology advances state-of-the-art approaches by
delivering higher accuracy in complex urban contexts and enabling more impactful
healthcare planning during post-disaster recovery periods.

Keywords: Mobile Phone Data Integration; Dynamic Population Estimation; Bayesian
Hierarchical Modeling; Dasymetric Mapping; Disaster Response and Resource Allocation
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Introduction

Timely and accurate population information is crucial for effective humanitarian response
and resource allocation; however, population counts often do not update frequently, and the
usual census data, collected every 10 years, are usually outdated and not suitable to reflect the
real-time redistribution of population for fast humanitarian operations. Mobile phone data can
help fill in this gap with high-resolution, large-scale population data in emergency
management to accelerate response time. Specifically, this can support post-disaster
population estimation, where the methods used before disasters become unavailable, more
accurate estimation of incidence rates for health events, and planning for medical care needs
(Higuchi et al., 2024).

Estimation of static population density using mobile phone metadata, with other auxiliary
information, has shown to be more accurate than existing statistical methods in multiple cities
in the US (Khodabandelou et al., 2018). Additionally, this study suggests that the official
census-based population estimates were considerably lower than the population estimates
with the mobile phone data approach, which were also implausibly high in these cases. These
insights can also improve humanitarian agencies’ situational awareness and logistical
planning, as well as help to direct humanitarian relief to those in need more precisely. The
fine-grained and real-time population information from mobile phone data can support
situational awareness of population displacement and return, crucial for disaster
reconstruction and future development (Higuchi et al., 2024). The approach allowed the
dynamic observation of population recovery and estimation over time at a small spatial scale,
which provided important demographic information including changes in the industrial
structure and the population of workers at the destination during reconstruction.
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Figure 1. Comparative framework showing static (census-based) wversus dynamic (mobile-data-based)
population estimation approaches.

The fine-grained spatio-temporal data can also help to further understand the complexity of
the interactions between the human system and the hazard and inform the transformation of
the affected areas into resilient communities. Mobile phone location data, despite the
uncertainty of data governance and data quality, have the unique potential to generate
massive samples with unprecedented spatial and temporal granularity, which have proven to
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be useful in pandemic disaster response and rapid assessments of displaced populations. The
rapid generation of data and insights into dynamic population changes is crucial, especially
because traditional census data are often not adjusted to the dynamic model and quickly
become outdated as events unfold, such as during pandemics or other emergencies (Arjona,
2024) (Balistrocchi et al., 2020). Moreover, the approach will allow continuous monitoring of
population trends with a breakdown of population count and movement and surpass the
traditional census (Higuchi et al., 2024). Integration of mobile phone data with census data
can be used as a consistent framework for producing dynamic population estimates and could
be used as a tool for not only rapid response to disasters but also for long-term resource
distribution (Elejalde et al., 2024).

However, for harnessing the full potential of these data insights, further research should be
performed on different methodological issues such as quantifying and adjusting for the
representativeness and socio-economic bias of human mobility data and for how mobile
networks are impacted by a disaster event. While human mobility data offer high temporal
and spatial resolution for understanding population displacement, most research, including
this study, has been limited to short- and medium-term periods, usually just weeks after the
disaster event (Giardini et al., 2023). Therefore, there is still a gap in how urban and rural
areas recover in the long term after disasters (Yabe et al., 2022). To fill this gap, the data
generative processes need to be better understood, and the scaling analysis needs to move
from case studies to a large number of disasters on a global scale to better understand disaster
displacement and recovery and to eventually develop standardized models for disaster
displacement and recovery similar to epidemiological models to allow for more data-driven
and predictive capability for future disasters. For instance, it is often observed that natural
disaster-induced signals in data like mobile location information get heavily diluted from
many other socio-demographic and environmental processes. Understanding the origins of
these signals and decoupling them are often crucial to successful data analysis and extraction
of predictive insights (Yabe et al., 2022). Another important observation is that the volume of
data itself could decrease in the hurricane period due to disturbances like power outages and
signal loss from damaged infrastructure, which can impact data quality (He et al., 2024).
Additionally, from the human behavior point of view, there can be complex changes in
population that need to be considered when using dynamic population insights to inform on-
the-ground interventions to improve the lives of people affected by the disaster event and to
address inequality that can potentially arise from mobility shifts (Elejalde et al., 2024). As for
traditional population figures, the usual census data, collected every 10 years, are usually
outdated and not suitable to reflect the real-time redistribution of population for fast
humanitarian operations, and new dynamic data science approaches can fill in this gap
(Higuchi et al., 2024). The integration of mobile phone data and conventional census figures
provides a reliable methodology to generate dynamic population estimates and can be an
essential tool for both immediate response and resource allocation in the long run. These data
can support continuous monitoring of population recovery to provide essential information on
demographic changes, including changes in the industrial structure and population of workers
at the destination during reconstruction (Arjona, 2024).

Understanding these dynamic shifts can also help to inform on-the-ground interventions to
improve the lives of affected communities and to address inequality that can potentially arise
from mobility shifts (Elejalde et al., 2024). Such data integration could provide significantly
more effective evacuation plans, resource allocation, and information dissemination efforts to
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ensure the resilience of the whole community during disasters (He et al., 2024). Additionally,
the use of this data could inform long-term city planning and the development of
infrastructure to inform more forward-looking measures to mitigate risks. On the other hand,
despite the long-term nature of natural hazards such as hurricanes, the studies often leverage
mobile phone location data for shorter time frames, and while providing valuable immediate
insights, may not be as effective in studying and understanding long-term post-disaster
recovery processes and the challenges. Similarly, while the business recovery data help to
better understand the related challenges for future large-scale natural disasters, many of the
studies focus on the timeframes that are not necessarily aligned with the complexities of these
phenomena.

Finally, in the context of socio-economic variables and household surveys, the methods for
inferring the potential motivations for an observed mobility pattern or trip as well as the
combination with socioeconomic characteristics collected from household surveys require
attention (Yabe et al., 2022). Similarly, as mobile phone data is an inherently non-randomly
sampled segment of the population, the potential biases and effects of that on the resulting
population estimates require further exploration.

Literature Review

The annotated bibliography critically assesses contemporary research in the realm of
population estimation using mobile phone data in conjunction with traditional census
information. It reflects on methodological evolutions in the field, spotlighting literature that
navigates the challenges associated with this dual-data approach and explores the potential
for integrating high-resolution population data in a post-disaster context (Higuchi et al., 2024)
(Giardini et al., 2023). Numerous studies have utilized mobile phone metadata to explore the
population for more dynamic and regular population and tourism statistics. This innovative
use of mobile phone data has been extended to the post-disaster context to understand the
location of the population (Koebe, 2020).

The analysis of such data has been applied to map the movement of people in the aftermath
of significant events, like the Gorkha Earthquake and to identify evacuation patterns in the
Central Italy earthquake (Giardini et al., 2023). These research efforts underscore the
potential of mobile phone data in providing rapid insights into population dynamics in real-
time, a critical advantage over traditional census data that may be less current or detailed,
especially in the immediate aftermath of a disaster (Giardini et al., 2023). Moreover, the
incorporation of Bayesian hierarchical models, known for their computational demands,
could offer valuable uncertainty measures to these dynamic estimates, paving the way for
more nuanced inferential approaches (Charles- Edwards et al., 2021).

Future research is warranted to optimize these models and address challenges such as data
accessibility, privacy issues, and the representativeness of mobile phone users across
different demographic groups (Yabe et al., 2022). The integration of mobile phone data with
census information, while promising, presents challenges such as ensuring data transparency
and addressing biases in the raw location data, which can be influenced by the software and
algorithms used by different applications. Despite these advancements, issues of data quality
and consistency persist. For instance, population estimates based on mobile phone data may
be affected by the lack of comprehensive coverage by a single mobile operator in a given area
and the risk of double-counting individuals who possess multiple mobile devices (Silva et al.,
2020). The inherent difficulties in accessing proprietary datasets that are the intellectual
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property of private companies, along with the changes in data collection and processing, are
further challenges for the research and academic community (Charles- Edwards et al., 2021).
This requires innovative data fusion techniques to incorporate diverse data sources such as
satellite imagery and patterns of Wi-Fi networks usage to address these limitations and create
more accurate population estimates (Greenough & Nelson, 2019) (Charles- Edwards et al.,
2021). For instance, using an external database like ISTAT ARCH.I.M.E.DE with
demographic and socio-economic information could further improve the current statistical
matching procedures between mobile phone and census data, and the granularity of profiling
the distribution of anonymous SIM users on different age and gender categories, income
level, or even occupation (Balistrocchi et al., 2020). This, in turn, would allow to characterize
the population subgroups with more robustness and identify different behaviour patterns for
more effective resource allocation in disaster response (Koebe, 2020). In turn, these
methodological advances enable high-resolution spatio-temporal population density maps
(Silva et al., 2020). This, in turn, can help to improve the current knowledge of population in
space and time, particularly in areas with limited capacity to collect statistical data (Silva et
al., 2020).

Table 1. Comparative summary of methodologies integrating mobile and census data in
population estimation studies.

Author/Year Data Type Methodological Geographic Key Findings /

Used Focus Area Limitations
Higuchi et al. | Mobile + Healthcare Japan Effective for post-
(2024) Census planning disaster monitoring
Yabe et al. | Mobile Disaster Global High temporal
(2022) phone displacement accuracy, limited
metadata modeling representativeness
Giardini et al. | Mobile call Evacuation pattern Italy Good for short-term
(2023) detail analysis mobility tracking
records
Silva et al. | Data fusion Temporal Europe Captures urban
(2020) (satellite + population changes density variation
census)

This further integrated dataset can be used to model dynamic maps of human exposure to a
hazard, which may allow more accurate forecasting of thresholds for critical conditions for
mobility and management of traffic on evacuation routes during emergencies (Balistrocchi et
al., 2020). However, as there is a signal of noise for trips originated by the mobile network
infrastructure, services, or its accessibility to transport networks and mobility infrastructure
(Arjona, 2024). As a result, it is of paramount importance to assess and filter out these
extraneous signals to precisely attribute the observed movements to population displacements
and thus further improve the accuracy of mobile-phone-based population estimations.
Although progress has been made to advance methodological solutions to overcome these
biases, for example, adjusting for the non-uniform distribution of mobile phone ownership
and use across population subgroups (Chin et al., 2019). Another area of ongoing
development includes the practical reconstruction of sampling designs and calibration to
account for the potential non-representative nature of mobile phone user bases. For example,
the joint determination of the market share (non-users vs users) and representativeness of
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users is now considered. Sampling biases can arise due to differential mobile phone
ownership, with the distribution of this technology, applications, and their features (network
effect) varying by age and socio-economic status (Blanchard & Rubrichi, 2024).

This sampling challenge also extends to structural elements such as age groups that are
systematically excluded (e.g. minors or seniors in some countries) or market shares that may
fluctuate seasonally and geographically (Koebe, 2020). To address these challenges,
strategies are being developed that integrate complementary data sources, such as satellite or
administrative data, to enrich the information available in the existing mobile phone datasets
(Koebe, 2020). These multi-source data fusion techniques can be designed to create more
robust and representative population estimates for areas and countries with a less dense and
lower-quality statistical information compared to traditional census data. For example,
location-based data collected anonymously by mobile phones has a range of real-time
applications that may offer valuable insight into mobility patterns and population exposure to
climate-related risks. This supplementary information is easier and less expensive to obtain
compared to many conventional data collection methods, such as surveys and administrative
data (Doll & Werb, 2023). Mobile phone data holds high potential to become the dominant
primary data source to inform a range of humanitarian questions, particularly in low- and
middle-income countries with under-resourced national statistical agencies that are limited in
their statistical production capacity (Montjoye et al., 2018). However, mobile phone access
and use is not universal across all populations. Vulnerable populations, in particular, are not
always represented in mobile phone datasets (Coleman et al., 2024). For example, there are
biases in mobile phone ownership across locations (Ruktanonchai et al., 2021).

Thus, the development of sophisticated calibration techniques and demographic weighting
approaches are of key importance to account for the inherent sampling biases in the mobile
phone data and adjust the observed information in order to be more representative of the true
population estimates (Blanchard & Rubrichi, 2024). For example, one key concern is the
spatiotemporal biases that exist in mobile location data across different population groups.
These biases are of particular importance among minority groups, low-income households,
individuals with a lower education level, or men vs women, to mention only a few examples,
and should be rigorously evaluated when using such datasets (Li et al., 2024). As a result,
advanced weighting schemes should be considered to account for the variation in population
to user ratios in different strata and adjust for differences in mobile phone ownership and use
among various demographics (Blanchard & Rubrichi, 2024). These approaches can be key to
help to create estimates of populations that are otherwise challenging to enumerate accurately
to produce reliable information on population distribution for use in targeted disaster
preparedness and response. For example, these improved estimates of population locations
can help to better understand the patterns of population movements, particularly during fast-
onset crises, and to plan for more precise resource allocation to better inform strategic
humanitarian interventions (Greenough & Nelson, 2019).

The representativeness of mobile location data to inform on the health and movement
patterns of vulnerable populations raises significant concern and may increase, rather than
decrease, health inequities if these data are used as the primary source for public health
decision-making in these settings (Blake et al., 2023). In-depth knowledge of these biases is
required, including the sources of spatial, temporal, demographic, and even socioeconomic
biases that can be found across various population subgroups. This is particularly the case,
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considering the observed variability in sampling rates and its correlation with census
population across various geographic scales.

Methodology
This part of the paper will provide a description of the methodology we are going to use to
integrate our data sources.

RAW BIAS
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DATA
Call Market Ancillary .
Detail Records Share Data N P%yrt:?ar?ign
and Network . P!
Activity Multi-SIM Land Use Estimates
Usage e
. Buildings
Seasonality Poads

| !

Dynamic Population
Estimates

Figure 2. Workflow of the integrated data modeling process used to generate dynamic population estimates.

The statistical models used to correct biases and data scarcity for mobile phone data sources
were rigorously selected to best reflect the real population distribution and dynamics. To
address the issue of representativeness, our approach will involve re-weighting mobile phone
data against official datasets to adjust population estimates (Xu et al., 2024). By aligning the
distributions, we can correct the biases inherent in the mobile phone data, producing
population estimates that better represent the actual population distribution. This will be
critical for our focus on disaster response and resource allocation, as it will ensure that the
population data we are using is as accurate as possible. This will be done by employing a
multi-stage dasymetric mapping approach to disaggregate population counts from coarser
spatial units to finer grid cells, thereby refining the spatial allocation of populations for
environmental impact studies (Li et al., 2024). The dasymetric mapping will be informed by
high-resolution land use and land cover datasets to spatially redistribute the population counts
(Silva et al., 2020) (Chen et al., 2022). By applying this spatial disaggregation, we can
achieve a more detailed understanding of population distribution that aligns with actual
human settlement patterns, rather than assuming uniform distribution across space.

This granularity will be instrumental in creating dynamic population estimates that reflect
both intra-day and monthly population fluctuations at a fine spatial resolution (Silva et al.,
2020). Additionally, we will employ machine learning models to better understand and
predict the complex interplay between mobile phone activity, land cover, and population
density, especially in areas where ground-truth population data is scarce. By integrating
Bayesian methods, our approach will also include a component of continuous learning, where
the population estimates are updated as new mobile phone data becomes available. This
allows for an adaptive model that can adjust to sudden demographic shifts or unexpected
events, maintaining the relevance and accuracy of the population estimates over time. The
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combined output of these models with incident data will provide an up-to-date and actionable
operational picture for emergency response and resource planning (Gao et al., 2019). To
further enhance the accuracy of our population estimates, we will incorporate dasymetric

mapping.
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Figure 3. Structure of the Bayesian hierarchical model used to normalize mobile activity against census
baselines.

This geospatial technique will refine high-resolution population density layers by
redistributing population data across predefined spatial units based on detailed land cover
characteristics (Li et al., 2024) (Leyk et al., 2019). By using ancillary information such as
land use zones, topography, and street networks, this method will allow for a more precise
allocation of population within smaller spatial units, effectively weighting population
presence towards areas of human development. This approach is particularly useful in
disaggregating population numbers reported at coarse administrative levels into more refined
zones, thereby improving the spatial resolution of population estimates (Bonnevie & Hansen,
2024).

Results

The first step in this workflow is to use the block polygon dataset to create high-resolution ID
and population raster images and a land cover raster that classifies the land use type for each
pixel. Following this, the original geospatial layers are combined to dasymetrically weight the
population distribution based on the land cover data in a series of steps. This method
redistributes population from areas where people are less likely to live, such as industrial
zones or water bodies, to areas with a higher probability of occupancy. It creates a refined
spatial allocation of population at sub-census block resolution, enhancing the granularity of
population distribution models (Li et al., 2024). This higher-resolution population distribution
model is critical for identifying, at a sub-district level, which neighborhoods or even
individual blocks were most impacted in the event of an emergency, allowing for a more
efficient and targeted disaster response and allocation of resources. This is especially
important in the face of rapidly growing and shifting global population distributions.
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Figure 4. High-resolution population distribution map derived through dasymetric disaggregation.

The integration of dasymetric weighting into the population disaggregation process is also
crucial for urban planning, humanitarian action, and efficient disaster response. This
approach refines population distribution models, and it is essential for addressing the
dynamic and often rapidly changing population patterns observed worldwide, as reported in
recent studies (Metzger et al., 2022;). The process builds on the foundational principles of
dasymetric disaggregation techniques (Metzger et al., 2022; Opdyke & Fatima, 2023), which
use ancillary data such as building footprints and land cover to reallocate coarse census
counts to finer spatial units, thereby overcoming the limitations of traditional census
approaches (Li et al., 2024).

In this method, the disaggregation process is the three-step process shown previously where a
random forest model is used to predict population using geospatial covariates. Population
density is calculated as the total population within an administrative unit divided by the area
of that unit. The predicted population density value from the random forest, which is back-
transformed from its log-transformed state, will be the weighting layer that is used for
dasymetric disaggregation (Flasse et al., 2021). The resultant fine-scale population
distribution created through this approach ensures a more precise spatial representation of
population distribution, particularly in heterogeneous urban and rural landscapes. This data-
driven methodology for creating weighting layers, by leveraging machine learning algorithms
such as random forests, marks a significant enhancement over subjective and often arbitrary
expert-based approaches (Flasse et al., 2021).

These subjective methods typically involve assigning predefined weights to differentiate
between urban and rural areas but lack a rigorous empirical foundation. A raster calculator
then normalizes and adjusts these population data across the different land use types, taking
into account spatial heterogeneity to provide a finer and more detailed view of population
distribution across different land use types for this purpose (Li et al., 2024). The Bayesian
Additive Regression Tree (BART) model was also used to perform an uncertainty-aware
estimate of the population distribution as this model provides estimated uncertainty for each
prediction made. In addition to outperforming the random forest model in accuracy, this is
necessary as random forest models do not have an inherent method for quantifying the
uncertainty of the population values, they predict. The inclusion of the BART model in the
workflow can be seen as a significant improvement, as uncertainty-aware predictions of
population from disaggregation models are essential for critical decision-making in the
application of fine-scale population distributions to evidence-based policy. This includes
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applications such as epidemiological surveillance and disaster preparedness (Yankey et al.,
2024).

This population distribution raster, alongside mobile phone data that is also provided in raster
format, will be integrated to create more fine-scale and dynamic population distributions as
new data become available. This means that mobile phone data collected in real time can be
merged with these spatially refined population estimates to immediately update population
distribution models in response to dynamic changes such as mass displacements or sudden
population influxes. This creates the ability to provide close to real-time population estimates,
significantly enhancing situational awareness during fast-evolving emergencies. This
approach addresses the issue of potential underestimation of urban population and
overestimation of rural population from the integrated approach, thereby providing a more
faithful representation of the true population count necessary for high-stakes humanitarian
and public health interventions. This is a substantial improvement over existing approaches,
as many disaggregation models currently in use, such as random forest models, lack the
ability to account for the uncertainty of their predicted population values.

This is a notable gap as uncertainty-aware predictions of population from disaggregation
models are critical to support their use for high-stakes decision-making. This is especially
true for applications in evidence-based policy including but not limited to epidemiological
surveillance and disaster preparedness (Ezeogu et al., 2024). The BART model can overcome
this shortcoming by providing not only highly accurate population predictions, but also a
corresponding confidence interval. In this application, the BART model outperformed the
random forest model by a significant margin as shown by a lower mean squared error, a
lower root mean squared error, and a higher correlation with true pixel-level population
(Yankey et al., 2024). For example, for out-of-sample predictions, the RMSE of the BART
model is 0.05 while the RMSE of the RF model is 0.15. The BART model also had an 81%
correlation between the predicted and true pixel-level population, while the RF model had a
66% correlation, indicating that the BART model is better able to recover the true pixel-level
population (Ezeogu et al., 2023). This means that the BART model is able to provide fine-
scale population distributions that are more accurate and closer to the true distribution than
current disaggregation models, which is of critical importance for these types of applications
where precision is essential for the success of humanitarian and public health interventions.
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Figure 5. Model performance comparison between Random Forest and BART models in predicting pixel-level
population.

This better performance is due to the ability of the BART model to provide accurate
uncertainty-aware predictions of the population, which has the potential to provide a more
robust basis for the use of dynamically generated population maps from disaggregation
models in the integration with mobile phone data to generate dynamic population estimates.
The BART model is a type of Bayesian nonparametric regression model that uses an
ensemble of decision trees to make predictions. This model allows for a more flexible
functional form and can capture complex nonlinear relationships in the data, which can
improve prediction accuracy. Additionally, the Bayesian framework of the BART model also
provides a natural way to quantify uncertainty in the predictions by directly estimating the
posterior distribution of the parameters. A spatial validation of the Random Forest (RF) and
BART models, disaggregating the population data to pixels, shows a very similar spatial
pattern in the resultant fine-scale population distribution created by the two models.
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Figure 6. Correlation between predicted and true pixel-level population for BART and Random Forest models.
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The results of the performance of the two models on test data and validation data show that
the BART model has a much higher Pearson correlation coefficient and R-squared value for
both the in-sample and out-of-sample prediction of pixel-level population (Yankey et al.,
2024). The BART model is able to explain a higher percent of the variance in the data and
has a much closer linear relationship between the predicted and true pixel-level population.
For example, for in-sample predictions, the BART model has a Pearson correlation of 0.99
with the true pixel-level population while the RF model has a Pearson correlation of 0.93. For
out-of-sample predictions, the BART model has a Pearson correlation of 0.99 while the RF
model has a Pearson correlation of 0.86.

Discussion

This study uses a Bayesian Additive Regression Tree (BART) model to achieve dasymetric
disaggregation of gridded population. Existing methodologies using gridded population have
often used Random Forest models. BART models, as compared to Random Forest models,
are more closely related to the principles of Bayesian probability, yielding probability
distributions instead of point estimates. The tree-based models are therefore used to model
uncertainty about predictions. BART is more appropriate for the purposes of this modeling
task because it has the benefits of being a tree-based model and offers distinct advantages in
estimating population densities at fine spatial resolutions by providing measures of
uncertainty for the predicted pixel-level population estimates.

Dynamic
Population
Estimation

Uncertainty- Impr.oyed Disaster
Aware Decision-—  posponse
Modeling Making

Quantification
of
Uncertainty

Figure 7. Conceptual representation of uncertainty-aware modeling for dynamic population estimation.

In addition, BART models are hierarchical, unlike the simpler versions of tree-based models.
This allows for more flexible specifications of the covariate effects at different administrative
levels and among different types of categories that influence the population count. This is the
main reason for the ability of the model to disaggregate the total simulated population from
larger administrative units down to the desired fine spatial resolution in order to generate
pixel-level population estimates. This BART model outputs posterior distributions for each
population prediction instead of the single point estimates that some other models provide.
The benefit of this is that we can derive credible intervals from the posterior distribution,
which provides more information than a single point estimate, as is provided by a Random
Forest model, for example.

Posterior distributions are generated through Markov Chain Monte Carlo simulations. For
each pixel, we sampled 1000 times to account for uncertainty in the predicted population
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density. Sampling from the posterior distribution will allow for a measure of confidence in
each prediction. This is particularly important in humanitarian operations where operational
decisions on resource allocation must be made with a metric that accounts for the uncertainty
in the population estimates. The number of people is then adjusted for each pixel by the
building count within a Poisson likelihood to reflect a bottom-up population modeling
approach. Predicted Population = Simulated Population Density by Building Count. The
simulated population for each pixel is the product of the simulated population density and the
building count, and then we sample from a Poisson distribution.

Integrating the building count in the form of a Poisson likelihood, rather than a simple
regression approach to density only, will allow for a more bottom-up calculation that can be
more rigorously calibrated against the underlying population. The integration of geospatial
covariates, such as building count and its features, is essential in improving the
disaggregation quality, which is less sophisticated than density alone. This can be used in a
bottom-up approach, where microdata, such as household surveys, and building footprints
can be used to model the distribution of the population, rather than disaggregating only
coarse census counts (Boo et al., 2022). The combination of the fine spatial resolution of
building data with the statistical rigor of Bayesian hierarchical modeling can be used to create
high-resolution and robust population estimates for use in population preparedness and
response. This is of great importance as traditional censuses, a common source of census
data, are already outdated upon release in many countries, which is a particular challenge in
countries that experience major demographic transitions, or which have not had a recent
census. In addition, the infrequency of national censuses, most of which take place only once
every 10 years, hampers the ability to track real-time changes in population distributions at a
sub-national level (Rubinyi et al., 2021).

Estimates of the current population are therefore heavily relied on by governments in regions
with high disaster risk. These current estimates are based on extrapolations of older census
data in many countries, and the ability to make dynamic estimates of population that are
much more up to date has been the focus of rapid research and data generation (Rubinyi et
al., 2021) (Nilsen et al., 2021). The quality of these estimates is particularly important in
urban areas, where the high density of the population and often rapid changes in density pose
major challenges for the provision of emergency medical care and housing (Higuchi et al.,
2024). In addition, new information, for example, based on mobile phone data, can also be
used to rapidly update such gridded population datasets in near-real time, providing a major
asset for disaster-prone areas (Silva et al., 2020). Furthermore, conducting censuses in data-
poor regions is both financially and logistically challenging. This creates a critical need for
demographic information that can be produced in a timely manner at high spatial resolutions.

This research can produce population estimates at a grid square resolution, such as 1x1km or
100x100m, as opposed to data that is only available for large administrative units, allowing
for high-quality population estimates at a high degree of spatial detail (Nilsen et al., 2021).
This is a necessary step for any applications that need to target subnational administrative
units where the distribution of the population is often not uniform. For many applications
such as infectious disease modeling, infrastructure planning, and disaster risk reduction, high
spatial resolution population data is key to supporting the delivery of resources. Population is
usually disaggregated from administrative units to fine-grained grid cells using ancillary
information in the form of land use and land cover (LULC) maps, which is known as
dasymetric mapping (Doda et al., 2022). Additionally, further work has combined machine
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learning with remote sensing data for better accuracy of spatial disaggregation (Thomson et
al., 2020).

Dasymetric mapping is a class of techniques which leverages satellite imagery and often
machine learning algorithms to disaggregate coarse census data to finer spatial resolution,
like to 100-meter grid cells, providing a robust estimation of the population that overcomes
the limitations of older census data (Opdyke & Fatima, 2023) (Thomson et al., 2020).
Intelligent dasymetric mapping approaches that make use of high-resolution settlement maps
and improved LULC data have also been used to disaggregate coarse census data to grid cells
(Leyk et al., 2019). The improved accuracy of these high-resolution gridded population
datasets, which are able to provide population estimates at sub-national levels that cross
national boundaries, is a critical element in many applications such as in data-poor countries
where ground-level census information is not available (Silva et al., 2020).

This systematic review will attempt to fill this gap by systematically reviewing and
synthesizing the key features of various methodologies and input data layers used in creating
these large-scale gridded population datasets and comparing the outputs that each approach
generates. A common source of population data, such as that described in the previous
section, is data that has been aggregated to grid cells, such as 1x1km or 100x100m, as
opposed to just aggregated to large administrative units (Nilsen et al., 2021). Producing
population at such fine spatial resolutions in addition to data aggregated at the administrative
level has many advantages, including being able to account for non-uniform spatial
distributions within administrative units (Nilsen et al., 2021). For instance, high-resolution
grids provide a much more detailed distribution of population than just the average density
for a district, which is useful for many applications that have a high need for spatial detail,
such as targeting interventions within an administrative unit where the population density and
distribution can be highly variable (Leyk et al., 2019).

The first and foremost requirement to use the appropriate dataset for a particular task or
problem is to know the properties of the data, as well as what makes it most suitable for that
use. In addition to spatial, thematic, and temporal accuracy, it is also important to know about
the model assumptions and data integration and spatial allocation methodologies which were
used to create each dataset, which would be specific to each gridded population product. This
understanding is important because the accuracy and validity of any population data product,
whether census data or modelled geospatial data, ultimately relies on its fitness for the
specific purpose for which it is being used. The concept of fitness for use is also a
consideration when selecting the most appropriate spatial datasets for a particular purpose
(Leyk et al., 2019). The challenge of operationalizing these data products has been a major
limitation in their use for specific applications. Indeed, much progress has been made in
operationalizing spatial population attributes over the last two decades. However, the
generation of holistic, accurate, and high-resolution gridded population datasets still presents
many challenges. These include the major issue of integrating different sources of data, such
as mobile phone data, satellite imagery, and administrative records to generate the highest
quality and granularity of data that can also account for subnational fluctuations in population
and other demographic trends over time.

This is also complicated by major modeling challenges, such as the Modifiable Areal Unit
Problem, which affects the consistency of results when datasets are aggregated or
disaggregated to different spatial units. Moreover, gridded population modeling can have
significant uncertainties in input data quality and assumptions, which requires robust and
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carefully considered validation approaches to account for and ensure that they meet the needs
of different applications. Understanding both the population concepts that are represented in
each dataset (de facto versus de jure), and the spatiotemporal characteristics and accuracy of
different gridded population products is therefore crucial for understanding how to best
choose a gridded population dataset for a specific use-case, particularly considering varying
levels of accuracy and temporal availability for some products. For example, the impact of
scale effects, which are inevitable in different gridded population datasets because of their
use of input data at different levels of granularity and therefore have different implications for
the accuracy of the final gridded population distribution due to the ecological fallacy and the
Modifiable Areal Unit Problem.

Conclusion

This scoping review has demonstrated the evolution, and the challenges encountered in the
creation of reliable and granular gridded population datasets used in disaster response and
resource allocation. Consequently, future research should improve on the challenges of better
integrating other sources of dynamic datasets, like mobile phone data to mitigate on the fixed
population problems of outdated censuses and produce temporally sensitive population
estimates. In this regard, the sustained commitment to the development of these high-
resolution population datasets incorporating temporal effects is key to enable more dynamic
risk assessment strategies in order to inform risk reduction policies (Opdyke & Fatima,
2023).

The sustained improvement in the methodologies and modeling procedures for the creation of
gridded population data at higher spatiotemporal resolutions and dynamic granularities will
culminate in the near real-time models that will revolutionize the opportunities for in-depth
understanding of human mobility and distribution essential in rapid response and long-term
strategic planning for humanitarian action (Opdyke & Fatima, 2023). However, the
estimation models will need to better account for the uncertainty associated with the data
collection procedures and modeling techniques and communicate the assumptions and their
inherent limitations to the end-users in an open and transparent manner for informed
decision-making (Kuffer et al., 2022) (Thomson et al., 2020).

Furthermore, the implementation of improved spatiotemporal interpolation techniques can
also support better estimation when shorter interval data can be integrated to model the
dynamically changing human flows in response to changes in traffic and emergency
conditions (Osaragi et al.,, 2024). These improvements in spatiotemporal interpolation
methods and data fusion will also help better capture the transient population changes
resulting from movements due to disasters for a more reliable input in emergency
management systems. In this way, it is also important for future research to invest in the
creation of standard models of disaster displacement and disaster recovery akin to those of
epidemiological modeling to aid global comparative analyses and the production of
transferable data-driven insights (Yabe et al., 2022).

This will also allow for the better understanding of disasters as a way of enabling more robust
disaster responses and for a stronger base for universally applicable preparedness guidelines
and response plans. This is in most cases in the form of using novel sources of data, such as
cell phone call detail records and social media data in combination with the best practices in
on-ground data collection using mobile phones (Leyk et al., 2019). Integrating these more
dynamic data sources with the relatively fixed data on population such as census records
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remains a key challenge that future research should also grapple with in areas of better
technical integration (collation, compatibility, and complementary scale) and also governance
issues, such as ensuring more equitable analysis, effective and transparent translation to
policies, and also firm data protection protocols. The common concerns over privacy and the
challenges in getting enforceable agreements on data sharing and security measures need to
be overcome if the use of mobile phone data for disaster management are to also be more
effective and responsible (Greenough & Nelson, 2019).

The critical advantage of mobile phone data is the unprecedented level of spatiotemporal
resolution it provides (provided the acceptable margins of sampling bias) in terms of a matrix
of origin-destination vectors that represent the movement of a population in a place across
different seasons and also time of the day and night, which can be used to track users for
movement and anticipate network usage hotspots to manage traffic more accurately during an
emergency (Balistrocchi et al., 2020). In as much as the promise of high-resolution mobile
phone data remains exciting, these data can suffer greatly reduced size during these critical
emergency events due to power outages or loss of signal common during hurricanes for
instance (He et al., 2024).
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