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Abstract 
Accurate and up-to-date information on where people are and in what numbers is essential for 

disaster management and the fair distribution of public goods and services. However, official 

population counts are typically only available from censuses, which are often outdated and 

lack temporal and spatial resolution. Here we develop and validate a scalable approach that 

combines anonymized, aggregated mobile phone data (call detail records and passive network 

events) and census baselines to produce up-to-date, error-quantified population estimates at 

sub-district spatial resolutions and hourly to daily temporal frequencies. We normalize 

mobile activity to resident population with a Bayesian hierarchical model that accounts for 

carrier market share, multi-SIM ownership, inactive devices, and diurnal/weekly seasonality 

effects. We allocate the normalized activity across space with dasymetric mapping using 

ancillary layers (land use, building footprints, night-time lights, road networks) to restrict to 

likely inhabited areas and disentangle through-mobility from residential population. A state-

space data assimilation framework fuses multiple activity signals (tower handovers, app 

pings, emergency alert traffic) to provide near–real-time population updates in the presence 

of hazard-induced mobility changes. 

We assess performance against ground truth from household surveys, administrative 

registries, smart-meter rollups, and post-event field counts, reporting accuracy as mean 

absolute percentage error, coverage probabilities for credible intervals, and resilience to 

simulated network outages. We illustrate applications for storm evacuation and flood 

response, showing how the estimates can inform the pre-positioning of supplies, dynamic 

routing of ambulances, siting of mobile clinics and shelters, and prioritization of damage 

assessment teams. The framework incorporates privacy-by-design measures (k-anonymity 

thresholds, differential privacy noise, strict governance and retention policies) and generates 

confidence surfaces to enable risk-aware decision-making. 

Our method effectively transforms static census baselines into living population surfaces, 

helping responders and planners see where people are—and how they move—before, during, 

and after a disaster. Beyond the emergency context, the approach can support the routine 

distribution of health, education, and transportation resources, offering a practical, ethically 

sound pathway to data-driven public service delivery in rapidly urbanizing and peri-urban 

environments. This integrated methodology advances state-of-the-art approaches by 

delivering higher accuracy in complex urban contexts and enabling more impactful 

healthcare planning during post-disaster recovery periods. 

Keywords: Mobile Phone Data Integration; Dynamic Population Estimation; Bayesian 

Hierarchical Modeling; Dasymetric Mapping; Disaster Response and Resource Allocation 
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Introduction 
Timely and accurate population information is crucial for effective humanitarian response 

and resource allocation; however, population counts often do not update frequently, and the 

usual census data, collected every 10 years, are usually outdated and not suitable to reflect the 

real-time redistribution of population for fast humanitarian operations. Mobile phone data can 

help fill in this gap with high-resolution, large-scale population data in emergency 

management to accelerate response time. Specifically, this can support post-disaster 

population estimation, where the methods used before disasters become unavailable, more 

accurate estimation of incidence rates for health events, and planning for medical care needs 

(Higuchi et al., 2024).  

Estimation of static population density using mobile phone metadata, with other auxiliary 

information, has shown to be more accurate than existing statistical methods in multiple cities 

in the US (Khodabandelou et al., 2018). Additionally, this study suggests that the official 

census-based population estimates were considerably lower than the population estimates 

with the mobile phone data approach, which were also implausibly high in these cases. These 

insights can also improve humanitarian agencies’ situational awareness and logistical 

planning, as well as help to direct humanitarian relief to those in need more precisely. The 

fine-grained and real-time population information from mobile phone data can support 

situational awareness of population displacement and return, crucial for disaster 

reconstruction and future development (Higuchi et al., 2024). The approach allowed the 

dynamic observation of population recovery and estimation over time at a small spatial scale, 

which provided important demographic information including changes in the industrial 

structure and the population of workers at the destination during reconstruction.  

 
Figure 1. Comparative framework showing static (census-based) versus dynamic (mobile-data-based) 

population estimation approaches. 
The fine-grained spatio-temporal data can also help to further understand the complexity of 

the interactions between the human system and the hazard and inform the transformation of 

the affected areas into resilient communities. Mobile phone location data, despite the 

uncertainty of data governance and data quality, have the unique potential to generate 

massive samples with unprecedented spatial and temporal granularity, which have proven to 
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be useful in pandemic disaster response and rapid assessments of displaced populations. The 

rapid generation of data and insights into dynamic population changes is crucial, especially 

because traditional census data are often not adjusted to the dynamic model and quickly 

become outdated as events unfold, such as during pandemics or other emergencies (Arjona, 

2024) (Balistrocchi et al., 2020). Moreover, the approach will allow continuous monitoring of 

population trends with a breakdown of population count and movement and surpass the 

traditional census (Higuchi et al., 2024). Integration of mobile phone data with census data 

can be used as a consistent framework for producing dynamic population estimates and could 

be used as a tool for not only rapid response to disasters but also for long-term resource 

distribution (Elejalde et al., 2024).  

However, for harnessing the full potential of these data insights, further research should be 

performed on different methodological issues such as quantifying and adjusting for the 

representativeness and socio-economic bias of human mobility data and for how mobile 

networks are impacted by a disaster event. While human mobility data offer high temporal 

and spatial resolution for understanding population displacement, most research, including 

this study, has been limited to short- and medium-term periods, usually just weeks after the 

disaster event (Giardini et al., 2023). Therefore, there is still a gap in how urban and rural 

areas recover in the long term after disasters (Yabe et al., 2022). To fill this gap, the data 

generative processes need to be better understood, and the scaling analysis needs to move 

from case studies to a large number of disasters on a global scale to better understand disaster 

displacement and recovery and to eventually develop standardized models for disaster 

displacement and recovery similar to epidemiological models to allow for more data-driven 

and predictive capability for future disasters. For instance, it is often observed that natural 

disaster-induced signals in data like mobile location information get heavily diluted from 

many other socio-demographic and environmental processes. Understanding the origins of 

these signals and decoupling them are often crucial to successful data analysis and extraction 

of predictive insights (Yabe et al., 2022). Another important observation is that the volume of 

data itself could decrease in the hurricane period due to disturbances like power outages and 

signal loss from damaged infrastructure, which can impact data quality (He et al., 2024).  

Additionally, from the human behavior point of view, there can be complex changes in 

population that need to be considered when using dynamic population insights to inform on-

the-ground interventions to improve the lives of people affected by the disaster event and to 

address inequality that can potentially arise from mobility shifts (Elejalde et al., 2024). As for 

traditional population figures, the usual census data, collected every 10 years, are usually 

outdated and not suitable to reflect the real-time redistribution of population for fast 

humanitarian operations, and new dynamic data science approaches can fill in this gap 

(Higuchi et al., 2024). The integration of mobile phone data and conventional census figures 

provides a reliable methodology to generate dynamic population estimates and can be an 

essential tool for both immediate response and resource allocation in the long run. These data 

can support continuous monitoring of population recovery to provide essential information on 

demographic changes, including changes in the industrial structure and population of workers 

at the destination during reconstruction (Arjona, 2024).  

Understanding these dynamic shifts can also help to inform on-the-ground interventions to 

improve the lives of affected communities and to address inequality that can potentially arise 

from mobility shifts (Elejalde et al., 2024). Such data integration could provide significantly 

more effective evacuation plans, resource allocation, and information dissemination efforts to 



Research Corridor Journal of Engineering Science 
ISSN Online: 3078-3054, ISSN Print: 3078-3046 

Volume No: 01  Issue No: 02 (2024) 

 

 
213 

ensure the resilience of the whole community during disasters (He et al., 2024). Additionally, 

the use of this data could inform long-term city planning and the development of 

infrastructure to inform more forward-looking measures to mitigate risks. On the other hand, 

despite the long-term nature of natural hazards such as hurricanes, the studies often leverage 

mobile phone location data for shorter time frames, and while providing valuable immediate 

insights, may not be as effective in studying and understanding long-term post-disaster 

recovery processes and the challenges. Similarly, while the business recovery data help to 

better understand the related challenges for future large-scale natural disasters, many of the 

studies focus on the timeframes that are not necessarily aligned with the complexities of these 

phenomena.  

Finally, in the context of socio-economic variables and household surveys, the methods for 

inferring the potential motivations for an observed mobility pattern or trip as well as the 

combination with socioeconomic characteristics collected from household surveys require 

attention (Yabe et al., 2022). Similarly, as mobile phone data is an inherently non-randomly 

sampled segment of the population, the potential biases and effects of that on the resulting 

population estimates require further exploration. 

 

Literature Review 
The annotated bibliography critically assesses contemporary research in the realm of 

population estimation using mobile phone data in conjunction with traditional census 

information. It reflects on methodological evolutions in the field, spotlighting literature that 

navigates the challenges associated with this dual-data approach and explores the potential 

for integrating high-resolution population data in a post-disaster context (Higuchi et al., 2024) 

(Giardini et al., 2023). Numerous studies have utilized mobile phone metadata to explore the 

population for more dynamic and regular population and tourism statistics. This innovative 

use of mobile phone data has been extended to the post-disaster context to understand the 

location of the population (Koebe, 2020).  

The analysis of such data has been applied to map the movement of people in the aftermath 

of significant events, like the Gorkha Earthquake and to identify evacuation patterns in the 

Central Italy earthquake (Giardini et al., 2023). These research efforts underscore the 

potential of mobile phone data in providing rapid insights into population dynamics in real-

time, a critical advantage over traditional census data that may be less current or detailed, 

especially in the immediate aftermath of a disaster (Giardini et al., 2023). Moreover, the 

incorporation of Bayesian hierarchical models, known for their computational demands, 

could offer valuable uncertainty measures to these dynamic estimates, paving the way for 

more nuanced inferential approaches (Charles‐ Edwards et al., 2021).  

Future research is warranted to optimize these models and address challenges such as data 

accessibility, privacy issues, and the representativeness of mobile phone users across 

different demographic groups (Yabe et al., 2022). The integration of mobile phone data with 

census information, while promising, presents challenges such as ensuring data transparency 

and addressing biases in the raw location data, which can be influenced by the software and 

algorithms used by different applications. Despite these advancements, issues of data quality 

and consistency persist. For instance, population estimates based on mobile phone data may 

be affected by the lack of comprehensive coverage by a single mobile operator in a given area 

and the risk of double-counting individuals who possess multiple mobile devices (Silva et al., 

2020). The inherent difficulties in accessing proprietary datasets that are the intellectual 
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property of private companies, along with the changes in data collection and processing, are 

further challenges for the research and academic community (Charles‐ Edwards et al., 2021). 

This requires innovative data fusion techniques to incorporate diverse data sources such as 

satellite imagery and patterns of Wi-Fi networks usage to address these limitations and create 

more accurate population estimates (Greenough & Nelson, 2019) (Charles‐ Edwards et al., 

2021). For instance, using an external database like ISTAT ARCH.I.M.E.DE with 

demographic and socio-economic information could further improve the current statistical 

matching procedures between mobile phone and census data, and the granularity of profiling 

the distribution of anonymous SIM users on different age and gender categories, income 

level, or even occupation (Balistrocchi et al., 2020). This, in turn, would allow to characterize 

the population subgroups with more robustness and identify different behaviour patterns for 

more effective resource allocation in disaster response (Koebe, 2020). In turn, these 

methodological advances enable high-resolution spatio-temporal population density maps 

(Silva et al., 2020). This, in turn, can help to improve the current knowledge of population in 

space and time, particularly in areas with limited capacity to collect statistical data (Silva et 

al., 2020).  

Table 1. Comparative summary of methodologies integrating mobile and census data in 

population estimation studies. 

Author/Year Data Type 
Used 

Methodological 
Focus 

Geographic 
Area 

Key Findings / 
Limitations 

Higuchi et al. 
(2024) 

Mobile + 

Census 

Healthcare 

planning 

Japan Effective for post-

disaster monitoring 

Yabe et al. 
(2022) 

Mobile 

phone 

metadata 

Disaster 

displacement 

modeling 

Global High temporal 

accuracy, limited 

representativeness 

Giardini et al. 
(2023) 

Mobile call 

detail 

records 

Evacuation pattern 

analysis 

Italy Good for short-term 

mobility tracking 

Silva et al. 
(2020) 

Data fusion 

(satellite + 

census) 

Temporal 

population changes 

Europe Captures urban 

density variation 

 

This further integrated dataset can be used to model dynamic maps of human exposure to a 

hazard, which may allow more accurate forecasting of thresholds for critical conditions for 

mobility and management of traffic on evacuation routes during emergencies (Balistrocchi et 

al., 2020). However, as there is a signal of noise for trips originated by the mobile network 

infrastructure, services, or its accessibility to transport networks and mobility infrastructure 

(Arjona, 2024). As a result, it is of paramount importance to assess and filter out these 

extraneous signals to precisely attribute the observed movements to population displacements 

and thus further improve the accuracy of mobile-phone-based population estimations. 

Although progress has been made to advance methodological solutions to overcome these 

biases, for example, adjusting for the non-uniform distribution of mobile phone ownership 

and use across population subgroups (Chin et al., 2019). Another area of ongoing 

development includes the practical reconstruction of sampling designs and calibration to 

account for the potential non-representative nature of mobile phone user bases. For example, 

the joint determination of the market share (non-users vs users) and representativeness of 
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users is now considered. Sampling biases can arise due to differential mobile phone 

ownership, with the distribution of this technology, applications, and their features (network 

effect) varying by age and socio-economic status (Blanchard & Rubrichi, 2024).  

This sampling challenge also extends to structural elements such as age groups that are 

systematically excluded (e.g. minors or seniors in some countries) or market shares that may 

fluctuate seasonally and geographically (Koebe, 2020). To address these challenges, 

strategies are being developed that integrate complementary data sources, such as satellite or 

administrative data, to enrich the information available in the existing mobile phone datasets 

(Koebe, 2020). These multi-source data fusion techniques can be designed to create more 

robust and representative population estimates for areas and countries with a less dense and 

lower-quality statistical information compared to traditional census data. For example, 

location-based data collected anonymously by mobile phones has a range of real-time 

applications that may offer valuable insight into mobility patterns and population exposure to 

climate-related risks. This supplementary information is easier and less expensive to obtain 

compared to many conventional data collection methods, such as surveys and administrative 

data (Doll & Werb, 2023). Mobile phone data holds high potential to become the dominant 

primary data source to inform a range of humanitarian questions, particularly in low- and 

middle-income countries with under-resourced national statistical agencies that are limited in 

their statistical production capacity (Montjoye et al., 2018). However, mobile phone access 

and use is not universal across all populations. Vulnerable populations, in particular, are not 

always represented in mobile phone datasets (Coleman et al., 2024). For example, there are 

biases in mobile phone ownership across locations (Ruktanonchai et al., 2021).  

Thus, the development of sophisticated calibration techniques and demographic weighting 

approaches are of key importance to account for the inherent sampling biases in the mobile 

phone data and adjust the observed information in order to be more representative of the true 

population estimates (Blanchard & Rubrichi, 2024). For example, one key concern is the 

spatiotemporal biases that exist in mobile location data across different population groups. 

These biases are of particular importance among minority groups, low-income households, 

individuals with a lower education level, or men vs women, to mention only a few examples, 

and should be rigorously evaluated when using such datasets (Li et al., 2024). As a result, 

advanced weighting schemes should be considered to account for the variation in population 

to user ratios in different strata and adjust for differences in mobile phone ownership and use 

among various demographics (Blanchard & Rubrichi, 2024). These approaches can be key to 

help to create estimates of populations that are otherwise challenging to enumerate accurately 

to produce reliable information on population distribution for use in targeted disaster 

preparedness and response. For example, these improved estimates of population locations 

can help to better understand the patterns of population movements, particularly during fast-

onset crises, and to plan for more precise resource allocation to better inform strategic 

humanitarian interventions (Greenough & Nelson, 2019).  

The representativeness of mobile location data to inform on the health and movement 

patterns of vulnerable populations raises significant concern and may increase, rather than 

decrease, health inequities if these data are used as the primary source for public health 

decision-making in these settings (Blake et al., 2023). In-depth knowledge of these biases is 

required, including the sources of spatial, temporal, demographic, and even socioeconomic 

biases that can be found across various population subgroups. This is particularly the case, 
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considering the observed variability in sampling rates and its correlation with census 

population across various geographic scales. 

 

Methodology 
This part of the paper will provide a description of the methodology we are going to use to 

integrate our data sources.  

 
Figure 2. Workflow of the integrated data modeling process used to generate dynamic population estimates. 

 

The statistical models used to correct biases and data scarcity for mobile phone data sources 

were rigorously selected to best reflect the real population distribution and dynamics. To 

address the issue of representativeness, our approach will involve re-weighting mobile phone 

data against official datasets to adjust population estimates (Xu et al., 2024). By aligning the 

distributions, we can correct the biases inherent in the mobile phone data, producing 

population estimates that better represent the actual population distribution. This will be 

critical for our focus on disaster response and resource allocation, as it will ensure that the 

population data we are using is as accurate as possible. This will be done by employing a 

multi-stage dasymetric mapping approach to disaggregate population counts from coarser 

spatial units to finer grid cells, thereby refining the spatial allocation of populations for 

environmental impact studies (Li et al., 2024). The dasymetric mapping will be informed by 

high-resolution land use and land cover datasets to spatially redistribute the population counts 

(Silva et al., 2020) (Chen et al., 2022). By applying this spatial disaggregation, we can 

achieve a more detailed understanding of population distribution that aligns with actual 

human settlement patterns, rather than assuming uniform distribution across space.  

This granularity will be instrumental in creating dynamic population estimates that reflect 

both intra-day and monthly population fluctuations at a fine spatial resolution (Silva et al., 

2020). Additionally, we will employ machine learning models to better understand and 

predict the complex interplay between mobile phone activity, land cover, and population 

density, especially in areas where ground-truth population data is scarce. By integrating 

Bayesian methods, our approach will also include a component of continuous learning, where 

the population estimates are updated as new mobile phone data becomes available. This 

allows for an adaptive model that can adjust to sudden demographic shifts or unexpected 

events, maintaining the relevance and accuracy of the population estimates over time. The 
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combined output of these models with incident data will provide an up-to-date and actionable 

operational picture for emergency response and resource planning (Gao et al., 2019). To 

further enhance the accuracy of our population estimates, we will incorporate dasymetric 

mapping.  

 
Figure 3. Structure of the Bayesian hierarchical model used to normalize mobile activity against census 

baselines. 
This geospatial technique will refine high-resolution population density layers by 

redistributing population data across predefined spatial units based on detailed land cover 

characteristics (Li et al., 2024) (Leyk et al., 2019). By using ancillary information such as 

land use zones, topography, and street networks, this method will allow for a more precise 

allocation of population within smaller spatial units, effectively weighting population 

presence towards areas of human development. This approach is particularly useful in 

disaggregating population numbers reported at coarse administrative levels into more refined 

zones, thereby improving the spatial resolution of population estimates (Bonnevie & Hansen, 

2024). 

 

Results 
The first step in this workflow is to use the block polygon dataset to create high-resolution ID 

and population raster images and a land cover raster that classifies the land use type for each 

pixel. Following this, the original geospatial layers are combined to dasymetrically weight the 

population distribution based on the land cover data in a series of steps. This method 

redistributes population from areas where people are less likely to live, such as industrial 

zones or water bodies, to areas with a higher probability of occupancy. It creates a refined 

spatial allocation of population at sub-census block resolution, enhancing the granularity of 

population distribution models (Li et al., 2024). This higher-resolution population distribution 

model is critical for identifying, at a sub-district level, which neighborhoods or even 

individual blocks were most impacted in the event of an emergency, allowing for a more 

efficient and targeted disaster response and allocation of resources. This is especially 

important in the face of rapidly growing and shifting global population distributions.  
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Figure 4. High-resolution population distribution map derived through dasymetric disaggregation. 
The integration of dasymetric weighting into the population disaggregation process is also 

crucial for urban planning, humanitarian action, and efficient disaster response. This 

approach refines population distribution models, and it is essential for addressing the 

dynamic and often rapidly changing population patterns observed worldwide, as reported in 

recent studies (Metzger et al., 2022;). The process builds on the foundational principles of 

dasymetric disaggregation techniques (Metzger et al., 2022; Opdyke & Fatima, 2023), which 

use ancillary data such as building footprints and land cover to reallocate coarse census 

counts to finer spatial units, thereby overcoming the limitations of traditional census 

approaches (Li et al., 2024).  

In this method, the disaggregation process is the three-step process shown previously where a 

random forest model is used to predict population using geospatial covariates. Population 

density is calculated as the total population within an administrative unit divided by the area 

of that unit. The predicted population density value from the random forest, which is back-

transformed from its log-transformed state, will be the weighting layer that is used for 

dasymetric disaggregation (Flasse et al., 2021). The resultant fine-scale population 

distribution created through this approach ensures a more precise spatial representation of 

population distribution, particularly in heterogeneous urban and rural landscapes. This data-

driven methodology for creating weighting layers, by leveraging machine learning algorithms 

such as random forests, marks a significant enhancement over subjective and often arbitrary 

expert-based approaches (Flasse et al., 2021).  

These subjective methods typically involve assigning predefined weights to differentiate 

between urban and rural areas but lack a rigorous empirical foundation. A raster calculator 

then normalizes and adjusts these population data across the different land use types, taking 

into account spatial heterogeneity to provide a finer and more detailed view of population 

distribution across different land use types for this purpose (Li et al., 2024). The Bayesian 

Additive Regression Tree (BART) model was also used to perform an uncertainty-aware 

estimate of the population distribution as this model provides estimated uncertainty for each 

prediction made. In addition to outperforming the random forest model in accuracy, this is 

necessary as random forest models do not have an inherent method for quantifying the 

uncertainty of the population values, they predict. The inclusion of the BART model in the 

workflow can be seen as a significant improvement, as uncertainty-aware predictions of 

population from disaggregation models are essential for critical decision-making in the 

application of fine-scale population distributions to evidence-based policy. This includes 
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applications such as epidemiological surveillance and disaster preparedness (Yankey et al., 

2024).  

This population distribution raster, alongside mobile phone data that is also provided in raster 

format, will be integrated to create more fine-scale and dynamic population distributions as 

new data become available. This means that mobile phone data collected in real time can be 

merged with these spatially refined population estimates to immediately update population 

distribution models in response to dynamic changes such as mass displacements or sudden 

population influxes. This creates the ability to provide close to real-time population estimates, 

significantly enhancing situational awareness during fast-evolving emergencies. This 

approach addresses the issue of potential underestimation of urban population and 

overestimation of rural population from the integrated approach, thereby providing a more 

faithful representation of the true population count necessary for high-stakes humanitarian 

and public health interventions. This is a substantial improvement over existing approaches, 

as many disaggregation models currently in use, such as random forest models, lack the 

ability to account for the uncertainty of their predicted population values.  

This is a notable gap as uncertainty-aware predictions of population from disaggregation 

models are critical to support their use for high-stakes decision-making. This is especially 

true for applications in evidence-based policy including but not limited to epidemiological 

surveillance and disaster preparedness (Ezeogu et al., 2024). The BART model can overcome 

this shortcoming by providing not only highly accurate population predictions, but also a 

corresponding confidence interval. In this application, the BART model outperformed the 

random forest model by a significant margin as shown by a lower mean squared error, a 

lower root mean squared error, and a higher correlation with true pixel-level population 

(Yankey et al., 2024). For example, for out-of-sample predictions, the RMSE of the BART 

model is 0.05 while the RMSE of the RF model is 0.15. The BART model also had an 81% 

correlation between the predicted and true pixel-level population, while the RF model had a 

66% correlation, indicating that the BART model is better able to recover the true pixel-level 

population (Ezeogu et al., 2023). This means that the BART model is able to provide fine-

scale population distributions that are more accurate and closer to the true distribution than 

current disaggregation models, which is of critical importance for these types of applications 

where precision is essential for the success of humanitarian and public health interventions.  
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Figure 5. Model performance comparison between Random Forest and BART models in predicting pixel-level 

population. 
This better performance is due to the ability of the BART model to provide accurate 

uncertainty-aware predictions of the population, which has the potential to provide a more 

robust basis for the use of dynamically generated population maps from disaggregation 

models in the integration with mobile phone data to generate dynamic population estimates. 

The BART model is a type of Bayesian nonparametric regression model that uses an 

ensemble of decision trees to make predictions. This model allows for a more flexible 

functional form and can capture complex nonlinear relationships in the data, which can 

improve prediction accuracy. Additionally, the Bayesian framework of the BART model also 

provides a natural way to quantify uncertainty in the predictions by directly estimating the 

posterior distribution of the parameters. A spatial validation of the Random Forest (RF) and 

BART models, disaggregating the population data to pixels, shows a very similar spatial 

pattern in the resultant fine-scale population distribution created by the two models.  

 
Figure 6. Correlation between predicted and true pixel-level population for BART and Random Forest models. 
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The results of the performance of the two models on test data and validation data show that 

the BART model has a much higher Pearson correlation coefficient and R-squared value for 

both the in-sample and out-of-sample prediction of pixel-level population (Yankey et al., 

2024). The BART model is able to explain a higher percent of the variance in the data and 

has a much closer linear relationship between the predicted and true pixel-level population. 

For example, for in-sample predictions, the BART model has a Pearson correlation of 0.99 

with the true pixel-level population while the RF model has a Pearson correlation of 0.93. For 

out-of-sample predictions, the BART model has a Pearson correlation of 0.99 while the RF 

model has a Pearson correlation of 0.86.  

 

Discussion 
This study uses a Bayesian Additive Regression Tree (BART) model to achieve dasymetric 

disaggregation of gridded population. Existing methodologies using gridded population have 

often used Random Forest models. BART models, as compared to Random Forest models, 

are more closely related to the principles of Bayesian probability, yielding probability 

distributions instead of point estimates. The tree-based models are therefore used to model 

uncertainty about predictions. BART is more appropriate for the purposes of this modeling 

task because it has the benefits of being a tree-based model and offers distinct advantages in 

estimating population densities at fine spatial resolutions by providing measures of 

uncertainty for the predicted pixel-level population estimates.  

 
Figure 7. Conceptual representation of uncertainty-aware modeling for dynamic population estimation. 
In addition, BART models are hierarchical, unlike the simpler versions of tree-based models. 

This allows for more flexible specifications of the covariate effects at different administrative 

levels and among different types of categories that influence the population count. This is the 

main reason for the ability of the model to disaggregate the total simulated population from 

larger administrative units down to the desired fine spatial resolution in order to generate 

pixel-level population estimates. This BART model outputs posterior distributions for each 

population prediction instead of the single point estimates that some other models provide. 

The benefit of this is that we can derive credible intervals from the posterior distribution, 

which provides more information than a single point estimate, as is provided by a Random 

Forest model, for example.  

Posterior distributions are generated through Markov Chain Monte Carlo simulations. For 

each pixel, we sampled 1000 times to account for uncertainty in the predicted population 
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density. Sampling from the posterior distribution will allow for a measure of confidence in 

each prediction. This is particularly important in humanitarian operations where operational 

decisions on resource allocation must be made with a metric that accounts for the uncertainty 

in the population estimates. The number of people is then adjusted for each pixel by the 

building count within a Poisson likelihood to reflect a bottom-up population modeling 

approach. Predicted Population = Simulated Population Density by Building Count. The 

simulated population for each pixel is the product of the simulated population density and the 

building count, and then we sample from a Poisson distribution.  

Integrating the building count in the form of a Poisson likelihood, rather than a simple 

regression approach to density only, will allow for a more bottom-up calculation that can be 

more rigorously calibrated against the underlying population. The integration of geospatial 

covariates, such as building count and its features, is essential in improving the 

disaggregation quality, which is less sophisticated than density alone. This can be used in a 

bottom-up approach, where microdata, such as household surveys, and building footprints 

can be used to model the distribution of the population, rather than disaggregating only 

coarse census counts (Boo et al., 2022). The combination of the fine spatial resolution of 

building data with the statistical rigor of Bayesian hierarchical modeling can be used to create 

high-resolution and robust population estimates for use in population preparedness and 

response. This is of great importance as traditional censuses, a common source of census 

data, are already outdated upon release in many countries, which is a particular challenge in 

countries that experience major demographic transitions, or which have not had a recent 

census. In addition, the infrequency of national censuses, most of which take place only once 

every 10 years, hampers the ability to track real-time changes in population distributions at a 

sub-national level (Rubinyi et al., 2021).  

Estimates of the current population are therefore heavily relied on by governments in regions 

with high disaster risk. These current estimates are based on extrapolations of older census 

data in many countries, and the ability to make dynamic estimates of population that are 

much more up to date has been the focus of rapid research and data generation (Rubinyi et 

al., 2021) (Nilsen et al., 2021). The quality of these estimates is particularly important in 

urban areas, where the high density of the population and often rapid changes in density pose 

major challenges for the provision of emergency medical care and housing (Higuchi et al., 

2024). In addition, new information, for example, based on mobile phone data, can also be 

used to rapidly update such gridded population datasets in near-real time, providing a major 

asset for disaster-prone areas (Silva et al., 2020). Furthermore, conducting censuses in data-

poor regions is both financially and logistically challenging. This creates a critical need for 

demographic information that can be produced in a timely manner at high spatial resolutions.  

This research can produce population estimates at a grid square resolution, such as 1x1km or 

100x100m, as opposed to data that is only available for large administrative units, allowing 

for high-quality population estimates at a high degree of spatial detail (Nilsen et al., 2021). 

This is a necessary step for any applications that need to target subnational administrative 

units where the distribution of the population is often not uniform. For many applications 

such as infectious disease modeling, infrastructure planning, and disaster risk reduction, high 

spatial resolution population data is key to supporting the delivery of resources. Population is 

usually disaggregated from administrative units to fine-grained grid cells using ancillary 

information in the form of land use and land cover (LULC) maps, which is known as 

dasymetric mapping (Doda et al., 2022). Additionally, further work has combined machine 
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learning with remote sensing data for better accuracy of spatial disaggregation (Thomson et 

al., 2020).  

Dasymetric mapping is a class of techniques which leverages satellite imagery and often 

machine learning algorithms to disaggregate coarse census data to finer spatial resolution, 

like to 100-meter grid cells, providing a robust estimation of the population that overcomes 

the limitations of older census data (Opdyke & Fatima, 2023) (Thomson et al., 2020). 

Intelligent dasymetric mapping approaches that make use of high-resolution settlement maps 

and improved LULC data have also been used to disaggregate coarse census data to grid cells 

(Leyk et al., 2019). The improved accuracy of these high-resolution gridded population 

datasets, which are able to provide population estimates at sub-national levels that cross 

national boundaries, is a critical element in many applications such as in data-poor countries 

where ground-level census information is not available (Silva et al., 2020).  

This systematic review will attempt to fill this gap by systematically reviewing and 

synthesizing the key features of various methodologies and input data layers used in creating 

these large-scale gridded population datasets and comparing the outputs that each approach 

generates. A common source of population data, such as that described in the previous 

section, is data that has been aggregated to grid cells, such as 1x1km or 100x100m, as 

opposed to just aggregated to large administrative units (Nilsen et al., 2021). Producing 

population at such fine spatial resolutions in addition to data aggregated at the administrative 

level has many advantages, including being able to account for non-uniform spatial 

distributions within administrative units (Nilsen et al., 2021). For instance, high-resolution 

grids provide a much more detailed distribution of population than just the average density 

for a district, which is useful for many applications that have a high need for spatial detail, 

such as targeting interventions within an administrative unit where the population density and 

distribution can be highly variable (Leyk et al., 2019).  

The first and foremost requirement to use the appropriate dataset for a particular task or 

problem is to know the properties of the data, as well as what makes it most suitable for that 

use. In addition to spatial, thematic, and temporal accuracy, it is also important to know about 

the model assumptions and data integration and spatial allocation methodologies which were 

used to create each dataset, which would be specific to each gridded population product. This 

understanding is important because the accuracy and validity of any population data product, 

whether census data or modelled geospatial data, ultimately relies on its fitness for the 

specific purpose for which it is being used. The concept of fitness for use is also a 

consideration when selecting the most appropriate spatial datasets for a particular purpose 

(Leyk et al., 2019). The challenge of operationalizing these data products has been a major 

limitation in their use for specific applications. Indeed, much progress has been made in 

operationalizing spatial population attributes over the last two decades. However, the 

generation of holistic, accurate, and high-resolution gridded population datasets still presents 

many challenges. These include the major issue of integrating different sources of data, such 

as mobile phone data, satellite imagery, and administrative records to generate the highest 

quality and granularity of data that can also account for subnational fluctuations in population 

and other demographic trends over time.  

This is also complicated by major modeling challenges, such as the Modifiable Areal Unit 

Problem, which affects the consistency of results when datasets are aggregated or 

disaggregated to different spatial units. Moreover, gridded population modeling can have 

significant uncertainties in input data quality and assumptions, which requires robust and 
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carefully considered validation approaches to account for and ensure that they meet the needs 

of different applications. Understanding both the population concepts that are represented in 

each dataset (de facto versus de jure), and the spatiotemporal characteristics and accuracy of 

different gridded population products is therefore crucial for understanding how to best 

choose a gridded population dataset for a specific use-case, particularly considering varying 

levels of accuracy and temporal availability for some products. For example, the impact of 

scale effects, which are inevitable in different gridded population datasets because of their 

use of input data at different levels of granularity and therefore have different implications for 

the accuracy of the final gridded population distribution due to the ecological fallacy and the 

Modifiable Areal Unit Problem. 

 

Conclusion 
This scoping review has demonstrated the evolution, and the challenges encountered in the 

creation of reliable and granular gridded population datasets used in disaster response and 

resource allocation. Consequently, future research should improve on the challenges of better 

integrating other sources of dynamic datasets, like mobile phone data to mitigate on the fixed 

population problems of outdated censuses and produce temporally sensitive population 

estimates. In this regard, the sustained commitment to the development of these high-

resolution population datasets incorporating temporal effects is key to enable more dynamic 

risk assessment strategies in order to inform risk reduction policies (Opdyke & Fatima, 

2023).  

The sustained improvement in the methodologies and modeling procedures for the creation of 

gridded population data at higher spatiotemporal resolutions and dynamic granularities will 

culminate in the near real-time models that will revolutionize the opportunities for in-depth 

understanding of human mobility and distribution essential in rapid response and long-term 

strategic planning for humanitarian action (Opdyke & Fatima, 2023). However, the 

estimation models will need to better account for the uncertainty associated with the data 

collection procedures and modeling techniques and communicate the assumptions and their 

inherent limitations to the end-users in an open and transparent manner for informed 

decision-making (Kuffer et al., 2022) (Thomson et al., 2020).  

Furthermore, the implementation of improved spatiotemporal interpolation techniques can 

also support better estimation when shorter interval data can be integrated to model the 

dynamically changing human flows in response to changes in traffic and emergency 

conditions (Osaragi et al., 2024). These improvements in spatiotemporal interpolation 

methods and data fusion will also help better capture the transient population changes 

resulting from movements due to disasters for a more reliable input in emergency 

management systems. In this way, it is also important for future research to invest in the 

creation of standard models of disaster displacement and disaster recovery akin to those of 

epidemiological modeling to aid global comparative analyses and the production of 

transferable data-driven insights (Yabe et al., 2022).  

This will also allow for the better understanding of disasters as a way of enabling more robust 

disaster responses and for a stronger base for universally applicable preparedness guidelines 

and response plans. This is in most cases in the form of using novel sources of data, such as 

cell phone call detail records and social media data in combination with the best practices in 

on-ground data collection using mobile phones (Leyk et al., 2019). Integrating these more 

dynamic data sources with the relatively fixed data on population such as census records 
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remains a key challenge that future research should also grapple with in areas of better 

technical integration (collation, compatibility, and complementary scale) and also governance 

issues, such as ensuring more equitable analysis, effective and transparent translation to 

policies, and also firm data protection protocols. The common concerns over privacy and the 

challenges in getting enforceable agreements on data sharing and security measures need to 

be overcome if the use of mobile phone data for disaster management are to also be more 

effective and responsible (Greenough & Nelson, 2019).  

The critical advantage of mobile phone data is the unprecedented level of spatiotemporal 

resolution it provides (provided the acceptable margins of sampling bias) in terms of a matrix 

of origin-destination vectors that represent the movement of a population in a place across 

different seasons and also time of the day and night, which can be used to track users for 

movement and anticipate network usage hotspots to manage traffic more accurately during an 

emergency (Balistrocchi et al., 2020). In as much as the promise of high-resolution mobile 

phone data remains exciting, these data can suffer greatly reduced size during these critical 

emergency events due to power outages or loss of signal common during hurricanes for 

instance (He et al., 2024). 
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